Summary
Nitrile rubber, also known as nitrile butadiene rubber, NBR, Buna-N, and acrylonitrile butadiene rubber, is a synthetic rubber derived from acrylonitrile (ACN) and butadiene. Trade names include Perbunan, Nipol, Krynac and Europrene. This rubber is unusual in being resistant to oil, fuel, and other chemicals. NBR is used in the automotive and aeronautical industry to make fuel and oil handling hoses, seals, grommets, and self-sealing fuel tanks. It is used in the nuclear industry to make protective gloves. NBR's stability at temperatures from makes it an ideal material for aeronautical applications. Nitrile butadiene is also used to produce moulded goods, footwear, adhesives, sealants, sponges, expanded foams, and floor mats. Its resilience makes NBR a useful material for disposable lab, cleaning, and examination gloves. Nitrile rubber is more resistant than natural rubber to oils and acids, and has superior strength, but has inferior flexibility. Nitrile rubber was developed in 1931 at BASF and Bayer, then part of chemical conglomerate IG Farben. The first commercial production began in Germany in 1935. The Buna-Werke was a slave labor factory located near Auschwitz and financed by IG Farben. The raw materials came from the Polish coalfields. Buna Rubber was named by BASF A.G., and through 1988 Buna was a remaining trade name of nitrile rubber held by BASF. Emulsifier (soap), acrylonitrile, butadiene, radical generating activators, and a catalyst are added to polymerization vessels in the production of hot NBR. Water serves as the reaction medium within the vessel. The tanks are heated to 30–40 °C to facilitate the polymerization reaction and to promote branch formation in the polymer. Because several monomers capable of propagating the reaction are involved in the production of nitrile rubber the composition of each polymer can vary (depending on the concentrations of each monomer added to the polymerization tank and the conditions within the tank). There may not be a single repeating unit throughout the entire polymer.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.