Genetic use restriction technology (GURT), also known as terminator technology or suicide seeds, is the name given to proposed methods for restricting the use of genetically modified crops by activating (or deactivating) some genes only in response to certain stimuli, especially to cause second generation seeds to be infertile. The development and application of GURTs is primarily an attempt by private sector agricultural breeders to increase the extent of protection on their innovations. The technology was originally developed under a cooperative research and development agreement between the Agricultural Research Service of the United States Department of Agriculture and Delta & Pine Land Company in the 1990s and is not yet commercially available. GURT was first reported on by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) to the UN Convention on Biological Diversity and discussed during the 8th Conference of the Parties to the United Nations Convention on Biological Diversity in Curitiba, Brazil, March 20–31, 2006. Because of the continued development of the technology and the continued protection of patents that develop it, many descriptions of GURT differ from others. Even so, the basic description of many GURTs are similar. The process is typically composed of four genetic components: a target gene, a promoter, a trait switch, and a genetic switch, sometimes with slightly different names in different papers. For example, a typical GURT works similarly to as follows: a plant with GURT technology has a target gene in its DNA that expresses when activated by a promoter gene. However, it is separated from the gene by a blocker sequence that prevents the promoter from accessing the target. When the plant receives a given external input, a genetic switch in the plant takes the input, amplifies it, and converts it into a biological signal. When a trait switch receives the amplified signal, it creates an enzyme that cuts the blocker sequence out.
Melanie Blokesch, Mirella Lo Scrudato
Giovanna Ambrosini, Philipp Bucher, René Dreos, Romain Fernand Pietro Groux, Patrick Meylan
Melanie Blokesch, Nicolas Jean Philippe Guex, Christian Iseli, Alexandre Lemopoulos, Nina Vesel