Concept

Sea ice growth processes

Sea ice is a complex composite composed primarily of pure ice in various states of crystallization, but including air bubbles and pockets of brine. Understanding its growth processes is important for climate modellers and remote sensing specialists, since the composition and microstructural properties of the ice affect how it reflects or absorbs sunlight. Sea ice growth models for predicting the ice distribution and extent are also valuable for shipping. An ice growth model can be combined with remote sensing measurements in an assimilation model as a means of generating more accurate ice charts. Several formation mechanisms of sea ice have been identified. At its earliest stages, sea ice consists of elongated, randomly oriented crystals. This is called frazil, and mixed with water in the unconsolidated state is known as grease ice. If wave and wind conditions are calm these crystals will consolidate at the surface, and by selective pressure begin to grow preferentially in the downward direction, forming nilas. In more turbulent conditions, the frazil will consolidate by mechanical action to form pancake ice, which has a more random structure. Another common formation mechanism, especially in the Antarctic where precipitation over sea ice is high, is from snow deposition: on thin ice the snow will weigh down the ice enough to cause flooding. Subsequent freezing will form ice with a much more granular structure. One of the more interesting processes to occur within consolidated ice packs is changes in the saline content. As the ice freezes, most of the salt content gets rejected and forms highly saline brine inclusions between the crystals. With decreasing temperatures in the ice sheet, the size of the brine pockets decreases while the salt content goes up. Since ice is less dense than water, increasing pressure causes some of the brine to be ejected from both the top and bottom, producing the characteristic 'C'-shaped salinity profile of first year ice. Brine will also drain through vertical channels, particularly in the melt season.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.