An automated external defibrillator or automatic electronic defibrillator (AED) is a portable electronic device that automatically diagnoses the life-threatening cardiac arrhythmias of ventricular fibrillation (VF) and pulseless ventricular tachycardia, and is able to treat them through defibrillation, the application of electricity which stops the arrhythmia, allowing the heart to re-establish an effective rhythm.
With simple audio and visual commands, AEDs are designed to be simple to use for the layperson, and the use of AEDs is taught in many first aid, certified first responder, and basic life support (BLS) level cardiopulmonary resuscitation (CPR) classes.
The portable version of the defibrillator was invented in the mid-1960s by Frank Pantridge in Belfast, Northern Ireland and the first automatic, public-use defibrillator was produced by the Cardiac Resuscitation Company in the late 1970s. The unit was launched under the name Heart-Aid.
An automated external defibrillator is used in cases of life-threatening cardiac arrhythmias which lead to sudden cardiac arrest, which is not the same as a heart attack. The rhythms that the device will treat are usually limited to:
Pulseless Ventricular tachycardia (shortened to VT or V-Tach)
Ventricular fibrillation (shortened to VF or V-Fib)
In each of these two types of shockable cardiac arrhythmia, the heart is electrically active, but in a dysfunctional pattern that does not allow it to pump and circulate blood. In ventricular tachycardia, the heart beats too fast to effectively pump blood. Ultimately, ventricular tachycardia leads to ventricular fibrillation. In ventricular fibrillation, the electrical activity of the heart becomes chaotic, preventing the ventricle from effectively pumping blood. The fibrillation in the heart decreases over time, and will eventually reach asystole.
AEDs, like all defibrillators, are not designed to shock asystole ('flat line' patterns) as this will not have a positive clinical outcome.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Fundamental principles and methods used for physiological signal conditioning. Electrode, optical, resistive, capacitive, inductive, and piezoelectric sensor techniques used to detect and convert phys
The American Heart Association (AHA) is a nonprofit organization in the United States that funds cardiovascular medical research, educates consumers on healthy living and fosters appropriate cardiac care in an effort to reduce disability and deaths caused by cardiovascular disease and stroke. Originally formed in New York City in 1915, it is currently headquartered in Dallas, Texas. The American Heart Association is a national voluntary health agency.
Basic life support (BLS) is a level of medical care which is used for patients with life-threatening illnesses or injuries until they can be given full medical care by advanced life support providers (paramedics, nurses, physicians). It can be provided by trained medical personnel, such as emergency medical technicians, and by qualified bystanders. The International Liaison Committee on Resuscitation (ILCOR) was formed in 1992 to coordinate the efforts of resuscitation worldwide.
Defibrillation is a treatment for life-threatening cardiac arrhythmias, specifically ventricular fibrillation (V-Fib) and non-perfusing ventricular tachycardia (V-Tach). A defibrillator delivers a dose of electric current (often called a counter-shock) to the heart. Although not fully understood, this process depolarizes a large amount of the heart muscle, ending the arrhythmia. Subsequently, the body's natural pacemaker in the sinoatrial node of the heart is able to re-establish normal sinus rhythm.
A cardiovascular monitoring system for measuring at least cardiac output comprises an implantable unit (2) configured for placement in a section of artery of a patient and a portable external unit (1) configured for mounting against or close to a patient's ...
The aim of this paper is to introduce a new mathematical model that simulates myocardial blood perfusion that accounts for multiscale and multiphysics features. Our model incorporates cardiac electrophysiology, active and passive mechanics, hemodynamics, v ...
Implanted medical devices (IMDs) have been widely developed to support the monitoring and recording of biological data inside the body or brain. Wirelessly powered IMDs, a subset of implantable electronics, have been proposed to eliminate the limitations r ...