A viability assay is an assay that is created to determine the ability of organs, cells or tissues to maintain or recover a state of survival. Viability can be distinguished from the all-or-nothing states of life and death by the use of a quantifiable index that ranges between the integers of 0 and 1 or, if more easily understood, the range of 0% and 100%. Viability can be observed through the physical properties of cells, tissues, and organs. Some of these include mechanical activity, motility, such as with spermatozoa and granulocytes, the contraction of muscle tissue or cells, mitotic activity in cellular functions, and more. Viability assays provide a more precise basis for measurement of an organism's level of vitality. Viability assays can lead to more findings than the difference of living versus nonliving. These techniques can be used to assess the success of cell culture techniques, cryopreservation techniques, the toxicity of substances, or the effectiveness of substances in mitigating effects of toxic substances. Though simple visual techniques of observing viability can be useful, it can be difficult to thoroughly measure an organism's/part of an organism's viability merely using the observation of physical properties. However, there are a variety of common protocols utilized for further observation of viability using assays. Tetrazolium reduction: One useful way to locate and measure viability is to complete a Tetrazolium Reduction Assay. The tetrazolium aspect of this assay, which utilizes both positive and negative charges in its formula, promotes the distinction of cell viability in a specimen. Resazurin reduction: Resazurin Reduction Assays perform very closely to that of a tetrazolium assay, except they use the power of redox to fuel their ability to represent cell viability. Protease viability marker: One can look at protease function in specimens if they wish to target viability in cells; this practice in research is known as "Protease Viability Marker Assay Concept".

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.