Concept

Truncated icosidodecahedron

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces. It has 62 faces: 30 squares, 20 regular hexagons, and 12 regular decagons. It has the most edges and vertices of all Platonic and Archimedean solids, though the snub dodecahedron has more faces. Of all vertex-transitive polyhedra, it occupies the largest percentage (89.80%) of the volume of a sphere in which it is inscribed, very narrowly beating the snub dodecahedron (89.63%) and small rhombicosidodecahedron (89.23%), and less narrowly beating the truncated icosahedron (86.74%); it also has by far the greatest volume (206.8 cubic units) when its edge length equals 1. Of all vertex-transitive polyhedra that are not prisms or antiprisms, it has the largest sum of angles (90 + 120 + 144 = 354 degrees) at each vertex; only a prism or antiprism with more than 60 sides would have a larger sum. Since each of its faces has point symmetry (equivalently, 180° rotational symmetry), the truncated icosidodecahedron is a 15-zonohedron. The name great rhombicosidodecahedron refers to the relationship with the (small) rhombicosidodecahedron (compare section Dissection). There is a nonconvex uniform polyhedron with a similar name, the nonconvex great rhombicosidodecahedron. The surface area A and the volume V of the truncated icosidodecahedron of edge length a are: If a set of all 13 Archimedean solids were constructed with all edge lengths equal, the truncated icosidodecahedron would be the largest. Cartesian coordinates for the vertices of a truncated icosidodecahedron with edge length 2φ − 2, centered at the origin, are all the even permutations of: (±1/φ, ±1/φ, ±(3 + φ)), (±2/φ, ±φ, ±(1 + 2φ)), (±1/φ, ±φ2, ±(−1 + 3φ)), (±(2φ − 1), ±2, ±(2 + φ)) and (±φ, ±3, ±2φ), where φ = 1 + /2 is the golden ratio.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.