Atmospheric optics is "the study of the optical characteristics of the atmosphere or products of atmospheric processes .... [including] temporal and spatial resolutions beyond those discernible with the naked eye". Meteorological optics is "that part of atmospheric optics concerned with the study of patterns observable with the naked eye". Nevertheless, the two terms are sometimes used interchangeably.
Meteorological optical phenomena, as described in this article, are concerned with how the optical properties of Earth's atmosphere cause a wide range of optical phenomena and visual perception phenomena.
Examples of meteorological phenomena include:
The blue color of the sky. This is from Rayleigh scattering, which sends more higher frequency/shorter wavelength (blue) sunlight into the eye of an observer than other frequencies/wavelength.
The reddish color of the Sun when it is observed through a thick atmosphere, as during a sunrise or sunset. This is because long-wavelength (red) light is scattered less than blue light. The red light reaches the observer's eye, whereas the blue light is scattered out of the line of sight.
Other colours in the sky, such as glowing skies at dusk and dawn. These are from additional particulate matter in the sky that scatter different colors at different angles.
Halos, afterglows, coronas, polar stratospheric clouds, and sun dogs. These are from scattering, or refraction, by ice crystals and from other particles in the atmosphere. They depend on different particle sizes and geometries.
Mirages. These are optical phenomena in which light rays are bent due to thermal variations in the refractive index of air, producing displaced or heavily distorted images of distant objects. Other optical phenomena associated with this include the Novaya Zemlya effect, in which the Sun has a distorted shape and rises earlier or sets later than predicted. A spectacular form of refraction, called the Fata Morgana, occurs with a temperature inversion, in which objects on the horizon or even beyond the horizon (e.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A mirage of an astronomical object is a meteorological optical phenomenon, in which light rays are bent to produce distorted or multiple images of an astronomical object. The mirages might be observed for such celestial objects as the Sun, the Moon, the planets, bright stars, and very bright comets. The most commonly observed of these are sunset and sunrise mirages. Mirages are distinguished from other phenomena caused by atmospheric refraction.
Optical phenomena are any observable events that result from the interaction of light and matter. All optical phenomena coincide with quantum phenomena. Common optical phenomena are often due to the interaction of light from the Sun or Moon with the atmosphere, clouds, water, dust, and other particulates. One common example is the rainbow, when light from the Sun is reflected and refracted by water droplets. Some phenomena, such as the green ray, are so rare they are sometimes thought to be mythical.
A Fata Morgana (ˈfaːta morˈɡaːna) is a complex form of superior mirage visible in a narrow band right above the horizon. The term Fata Morgana is the Italian translation of "Morgan the Fairy" (Morgan le Fay of Arthurian legend). These mirages are often seen in the Italian Strait of Messina, and were described as fairy castles in the air or false land conjured by her magic. Fata Morgana mirages significantly distort the object or objects on which they are based, often such that the object is completely unrecognizable.
Point clouds are effective data structures for the rep- resentation of three-dimensional media and hence adopted in a wide range of practical applications. In many cases, the portrayed data is expected to be visualized by humans. After acquisition, point c ...
Lightning is directly or indirectly responsible for significant human casualties and property damage worldwide. A timely prediction of its occurrence can enable authorities and the public to take necessary precautionary actions resulting in diminishing the ...
Basel2023
Elevated exposure to indoor air pollution is associated with negative human health and well-being outcomes. Inhalation exposure studies commonly rely on stationary monitors in combination with human time-activity patterns; however, this method is susceptib ...