Concept

Real-Time Messaging Protocol

Summary
Real-Time Messaging Protocol (RTMP) is a communication protocol for streaming audio, video, and data over the Internet. Originally developed as a proprietary protocol by Macromedia for streaming between Flash Player and the Flash Communication Server, Adobe (which acquired Macromedia) has released an incomplete version of the specification of the protocol for public use. The RTMP protocol has multiple variations: RTMP proper, the "plain" protocol which works on top of Transmission Control Protocol (TCP) and uses port number 1935 by default. RTMPS, which is RTMP over a Transport Layer Security (TLS/SSL) connection. RTMPE, which is RTMP encrypted using Adobe's own security mechanism. While the details of the implementation are proprietary, the mechanism uses industry standard cryptographic primitives. RTMPT, which is encapsulated within HTTP requests to traverse firewalls. RTMPT is frequently found utilizing cleartext requests on TCP ports 80 and 443 to bypass most corporate traffic filtering. The encapsulated session may carry plain RTMP, RTMPS, or RTMPE packets within. RTMFP, which is RTMP over User Datagram Protocol (UDP) instead of TCP, replacing RTMP Chunk Stream. The Secure Real-Time Media Flow Protocol suite has been developed by Adobe Systems and enables end‐users to connect and communicate directly with each other (P2P). While the primary motivation for RTMP was to be a protocol for playing Flash video, it is also used in some other applications, such as the Adobe LiveCycle Data Services ES. RTMP is a TCP-based protocol which maintains persistent connections and allows low-latency communication. To deliver streams smoothly and transmit as much information as possible, it splits streams into fragments, and their size is negotiated dynamically between the client and server. Sometimes, it is kept unchanged; the default fragment sizes are 64 bytes for audio data, and 128 bytes for video data and most other data types. Fragments from different streams may then be interleaved, and multiplexed over a single connection.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.