Summary
In computer science, static program analysis (or static analysis) is the analysis of computer programs performed without executing them, in contrast with dynamic program analysis, which is performed on programs during their execution. The term is usually applied to analysis performed by an automated tool, with human analysis typically being called "program understanding", program comprehension, or code review. In the last of these, software inspection and software walkthroughs are also used. In most cases the analysis is performed on some version of a program's source code, and, in other cases, on some form of its object code. The sophistication of the analysis performed by tools varies from those that only consider the behaviour of individual statements and declarations, to those that include the complete source code of a program in their analysis. The uses of the information obtained from the analysis vary from highlighting possible coding errors (e.g., the lint tool) to formal methods that mathematically prove properties about a given program (e.g., its behaviour matches that of its specification). Software metrics and reverse engineering can be described as forms of static analysis. Deriving software metrics and static analysis are increasingly deployed together, especially in creation of embedded systems, by defining so-called software quality objectives. A growing commercial use of static analysis is in the verification of properties of software used in safety-critical computer systems and locating potentially vulnerable code. For example, the following industries have identified the use of static code analysis as a means of improving the quality of increasingly sophisticated and complex software: Medical software: The US Food and Drug Administration (FDA) has identified the use of static analysis for medical devices. Nuclear software: In the UK the Office for Nuclear Regulation (ONR) recommends the use of static analysis on reactor protection systems. Aviation software (in combination with dynamic analysis).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.