The Global Geospace Science (GGS) Wind satellite is a NASA science spacecraft designed to study radio waves and plasma that occur in the solar wind and in the Earth's magnetosphere. It was launched on 1 November 1994, at 09:31:00 UTC, from launch pad LC-17B at Cape Canaveral Air Force Station (CCAFS) in Merritt Island, Florida, aboard a McDonnell Douglas Delta II 7925-10 rocket. Wind was designed and manufactured by Martin Marietta Astro Space Division in East Windsor Township, New Jersey. The satellite is a spin-stabilized cylindrical satellite with a diameter of and a height of .
The spacecraft's original mission was to orbit the Sun at the Lagrangian point, but this was delayed to study the magnetosphere and near lunar environment when the Solar and Heliospheric Observatory (SOHO) and Advanced Composition Explorer (ACE) spacecraft were sent to the same location. Wind has been at continuously since May 2004, and is still operating . , Wind currently has enough fuel to last over 50 more years at , until at least 2070. Wind continues to collect data, and by the end of 2022 had contributed data to over 6,780 scientific publications.
Mission operations are conducted from the Multi-Mission Operations Center (MMOC) in Building 14 at Goddard Space Flight Center in Greenbelt, Maryland. Wind data can be accessed using the SPEDAS software. Wind is the sister ship to GGS Polar.
The aim of the International Solar-Terrestrial Physics Science Initiative is to understand the behaviour of the solar-terrestrial plasma environment, in order to predict how the Earth's atmosphere will respond to changes in solar wind conditions. Wind objective is to measure the properties of the solar wind before it reaches the Earth.
Provide complete plasma, energetic particle, and magnetic field input for magnetospheric and ionospheric studies.
Determine the magnetospheric output to interplanetary space in the up-stream region.
Investigate basic plasma processes occurring in the near-Earth solar wind.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
Space physics, also known as solar-terrestrial physics or space-plasma physics, is the study of plasmas as they occur naturally in the Earth's upper atmosphere (aeronomy) and within the Solar System. As such, it encompasses a far-ranging number of topics, such as heliophysics which includes the solar physics of the Sun, the solar wind, planetary magnetospheres and ionospheres, auroras, cosmic rays, and synchrotron radiation.
The Solar and Heliospheric Observatory (SOHO) is a European Space Agency (ESA) spacecraft built by a European industrial consortium led by Matra Marconi Space (now Airbus Defence and Space) that was launched on a Lockheed Martin Atlas IIAS launch vehicle on 2 December 1995, to study the Sun. It has also discovered over 4,000 comets. It began normal operations in May 1996. It is a joint project between the European Space Agency (ESA) and NASA. SOHO was part of the International Solar Terrestrial Physics Program (ISTP).
A coronal mass ejection (CME) is a significant ejection of magnetic field and accompanying plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established. If a CME enters interplanetary space, it is referred to as an interplanetary coronal mass ejection (ICME).
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Fast camera imaging is used to study ion acoustic waves propagating azimuthally in a magnetized plasma column. The high-speed image sequences are analyzed using proper orthogonal decomposition and 2D Fourier transform, allowing to evaluate the assets and d ...
The plasma environment at a comet can be divided into different regions with distinct plasma characteristics. Two such regions are the solar wind ion cavity, which refers to the part of the outer coma that does not contain any solar wind ions anymore; and ...
This is chapter 1 of the State of Environmental Science in Svalbard (SESS) report 2022. We have used temperature measurements from a number of observatories in and above Svalbard to study temperature variations, and their relation to solar activity. Sea te ...