Nonelementary integralIn mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function (i.e. a function constructed from a finite number of quotients of constant, algebraic, exponential, trigonometric, and logarithmic functions using field operations). A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. This theorem also provides a basis for the Risch algorithm for determining (with difficulty) which elementary functions have elementary antiderivatives.
Symbolic integrationIn calculus, symbolic integration is the problem of finding a formula for the antiderivative, or indefinite integral, of a given function f(x), i.e. to find a differentiable function F(x) such that This is also denoted The term symbolic is used to distinguish this problem from that of numerical integration, where the value of F is sought at a particular input or set of inputs, rather than a general formula for F.
Incomplete gamma functionIn mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals. Their respective names stem from their integral definitions, which are defined similarly to the gamma function but with different or "incomplete" integral limits. The gamma function is defined as an integral from zero to infinity. This contrasts with the lower incomplete gamma function, which is defined as an integral from zero to a variable upper limit.
Liouville's theorem (differential algebra)In mathematics, Liouville's theorem, originally formulated by Joseph Liouville in 1833 to 1841, places an important restriction on antiderivatives that can be expressed as elementary functions. The antiderivatives of certain elementary functions cannot themselves be expressed as elementary functions. These are called nonelementary antiderivatives. A standard example of such a function is whose antiderivative is (with a multiplier of a constant) the error function, familiar from statistics.
MacsymaMacsyma (ˈmæksɪmə; "Project MAC's SYmbolic MAnipulator") is one of the oldest general-purpose computer algebra systems still in wide use. It was originally developed from 1968 to 1982 at MIT's Project MAC. In 1982, Macsyma was licensed to Symbolics and became a commercial product. In 1992, Symbolics Macsyma was spun off to Macsyma, Inc., which continued to develop Macsyma until 1999. That version is still available for Microsoft's Windows XP operating system.
Computer algebra systemA computer algebra system (CAS) or symbolic algebra system (SAS) is any mathematical software with the ability to manipulate mathematical expressions in a way similar to the traditional manual computations of mathematicians and scientists. The development of the computer algebra systems in the second half of the 20th century is part of the discipline of "computer algebra" or "symbolic computation", which has spurred work in algorithms over mathematical objects such as polynomials.
Elementary functionIn mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, including possibly their inverse functions (e.g., arcsin, log, or x1/n). All elementary functions are continuous on their domains. Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841.
AntiderivativeIn calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f. The process of solving for antiderivatives is called antidifferentiation (or indefinite integration), and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.
IntegralIn mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration started as a method to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Today integration is used in a wide variety of scientific fields.