Umbra, penumbra and antumbraThe umbra, penumbra and antumbra are three distinct parts of a shadow, created by any light source after impinging on an opaque object. Assuming no diffraction, for a collimated beam (such as a point source) of light, only the umbra is cast. These names are most often used for the shadows cast by celestial bodies, though they are sometimes used to describe levels, such as in sunspots. The umbra (Latin for "shadow") is the innermost and darkest part of a shadow, where the light source is completely blocked by the occluding body.
Transit of VenusA transit of Venus across the Sun takes place when the planet Venus passes directly between the Sun and a superior planet, becoming visible against (and hence obscuring a small portion of) the solar disk. During a transit, Venus can be seen from Earth as a small black dot moving across the face of the Sun. The duration of such transits is usually several hours (the transit of 2012 lasted 6 hours and 40 minutes). A transit is similar to a solar eclipse by the Moon.
Lunar eclipseA lunar eclipse is an astronomical event that occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. Such alignment occurs during an eclipse season, approximately every six months, during the full moon phase, when the Moon's orbital plane is closest to the plane of the Earth's orbit. This can occur only when the Sun, Earth, and Moon are exactly or very closely aligned (in syzygy) with Earth between the other two, which can happen only on the night of a full moon when the Moon is near either lunar node.
Syzygy (astronomy)_Syzygy In astronomy, a syzygy (ˈsɪzədʒi ; ) is a roughly straight-line configuration of three or more celestial bodies in a gravitational system. When Earth is one of the bodies involved, the other objects appear to be close together (or overlapping) in the sky. The word is often used in reference to the Sun, Earth, and either the Moon or a planet, where the latter is in conjunction or opposition. Solar and lunar eclipses occur at times of syzygy, as do transits and occultations.
Binary asteroidA binary asteroid is a system of two asteroids orbiting their common barycenter. The binary nature of 243 Ida was discovered when the Galileo spacecraft flew by the asteroid in 1993. Since then numerous binary asteroids and several triple asteroids have been detected. The mass ratio of the two components – called the "primary" and "secondary" of a binary system – is an important characteristic. Most binary asteroids have a large mass ratio, i.e. a relatively small satellite in orbit around the main component.
WeywotWeywot (formal designation (50000) Quaoar I; provisional designation S/2006 (50000) 1) is a natural satellite or moon of the trans-Neptunian dwarf planet 50000 Quaoar. It was discovered by Michael Brown and Terry-Ann Suer using images taken by the Hubble Space Telescope on 14 February 2006. Named after the Tongva sky god and son of Quaoar, Weywot is thought to be a fragment of Quaoar that was ejected into an eccentric orbit around the dwarf planet by a major impact event billions of years ago.