In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.
The spin connection occurs in two common forms: the Levi-Civita spin connection, when it is derived from the Levi-Civita connection, and the affine spin connection, when it is obtained from the affine connection. The difference between the two of these is that the Levi-Civita connection is by definition the unique torsion-free connection, whereas the affine connection (and so the affine spin connection) may contain torsion.
Let be the local Lorentz frame fields or vierbein (also known as a tetrad), which is a set of orthonormal space time vector fields that diagonalize the metric tensor
where is the spacetime metric and is the Minkowski metric. Here, Latin letters denote the local Lorentz frame indices; Greek indices denote general coordinate indices. This simply expresses that , when written in terms of the basis , is locally flat. The Greek vierbein indices can be raised or lowered by the metric, i.e. or . The Latin or "Lorentzian" vierbein indices can be raised or lowered by or respectively. For example, and
The torsion-free spin connection is given by
where are the Christoffel symbols. This definition should be taken as defining the torsion-free spin connection, since, by convention, the Christoffel symbols are derived from the Levi-Civita connection, which is the unique metric compatible, torsion-free connection on a Riemannian Manifold. In general, there is no restriction: the spin connection may also contain torsion.
Note that using the gravitational covariant derivative of the contravariant vector . The spin connection may be written purely in terms of the vierbein field as
which by definition is anti-symmetric in its internal indices .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The tetrad formalism is an approach to general relativity that generalizes the choice of basis for the tangent bundle from a coordinate basis to the less restrictive choice of a local basis, i.e. a locally defined set of four linearly independent vector fields called a tetrad or vierbein. It is a special case of the more general idea of a vielbein formalism, which is set in (pseudo-)Riemannian geometry. This article as currently written makes frequent mention of general relativity; however, almost everything it says is equally applicable to (pseudo-)Riemannian manifolds in general, and even to spin manifolds.
In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics.
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions. None of the elementary particles in the Standard Model are Weyl fermions. Previous to the confirmation of the neutrino oscillations, it was considered possible that the neutrino might be a Weyl fermion (it is now expected to be either a Dirac or a Majorana fermion).
Explores spinorial representations of the Lorentz group and the transformation of fields under Lorentz, emphasizing a constructive approach towards spinors.
We study inflation driven by the Higgs field in the Einstein-Cartan formulation of gravity. In this theory, the presence of the Holst and Nieh-Yan terms with the Higgs field non-minimally coupled to them leads to three additional coupling constants. For a ...
General relativity (GR) exists in different formulations. They are equivalent in pure gravity but generically lead to distinct predictions once matter is included. After a brief overview of various versions of GR, we focus on metric-affine gravity, which a ...
Magnetic skyrmions are whirl-like spin configurations with particle-like properties protected by non-trivial topology. Due to their unique spin structures and dynamical properties, they have attracted tremendous interests over the past decade, from fundame ...