A cross compiler is a compiler capable of creating executable code for a platform other than the one on which the compiler is running. For example, a compiler that runs on a PC but generates code that runs on an Android smartphone is a cross compiler. A cross compiler is useful to compile code for multiple platforms from one development host. Direct compilation on the target platform might be infeasible, for example on embedded systems with limited computing resources. Cross compilers are distinct from source-to-source compilers. A cross compiler is for cross-platform software generation of machine code, while a source-to-source compiler translates from one coding language to another in text code. Both are programming tools. The fundamental use of a cross compiler is to separate the build environment from target environment. This is useful in several situations: Embedded computers where a device has highly limited resources. For example, a microwave oven will have an extremely small computer to read its keypad and door sensor, provide output to a digital display and speaker, and to control the microwave for cooking food. This computer is generally not powerful enough to run a compiler, a file system, or a development environment. Compiling for multiple machines. For example, a company may wish to support several different versions of an operating system or to support several different operating systems. By using a cross compiler, a single build environment can be set up to compile for each of these targets. Compiling on a server farm. Similar to compiling for multiple machines, a complicated build that involves many compile operations can be executed across any machine that is free, regardless of its underlying hardware or the operating system version that it is running. Bootstrapping to a new platform. When developing software for a new platform, or the emulator of a future platform, one uses a cross compiler to compile necessary tools such as the operating system and a native compiler.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (14)
MICRO-315: Embedded Systems and Robotics
Ce cours aborde la programmation de systèmes embarqués: la cross-compilation, l'utilisation d'une FPU dans des microcontrôleurs, l'utilisation d'instructions DSP et les mécanismes à disposition dans l
CS-320: Computer language processing
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
EE-310: Microprogrammed Embedded Systems
L'étudiant comprendra les architectures des systèmes embarqués microprogrammés, les architectures des microprocesseurs, hiérarchie de mémoire et les différents périphériques de Entrée/Sortie (E/S) inc
Show more
Related publications (32)

Silent Bugs Matter: A Study of Compiler-Introduced Security Bugs

Mathias Josef Payer, Jianhao Xu

Compilers assure that any produced optimized code is semantically equivalent to the original code. However, even "correct" compilers may introduce security bugs as security properties go beyond translation correctness. Security bugs introduced by such corr ...
Berkeley2023

MOD2IR: High-Performance Code Generation for a Biophysically Detailed Neuronal Simulation DSL

Felix Schürmann, Pramod Shivaji Kumbhar, Omar Awile, Ioannis Magkanaris

Advances in computational capabilities and large volumes of experimental data have established computer simulations of brain tissue models as an important pillar in modern neuroscience. Alongside, a variety of domain specific languages (DSLs) have been dev ...
ACM2023

DASS: Combining Dynamic & Static Scheduling in High-Level Synthesis

Paolo Ienne, Lana Josipovic

A central task in high-level synthesis is scheduling: the allocation of operations to clock cycles. The classic approach to scheduling is static, in which each operation is mapped to a clock cycle at compile-time, but recent years have seen the emergence o ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022
Show more
Related people (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.