A cross compiler is a compiler capable of creating executable code for a platform other than the one on which the compiler is running. For example, a compiler that runs on a PC but generates code that runs on an Android smartphone is a cross compiler.
A cross compiler is useful to compile code for multiple platforms from one development host. Direct compilation on the target platform might be infeasible, for example on embedded systems with limited computing resources.
Cross compilers are distinct from source-to-source compilers. A cross compiler is for cross-platform software generation of machine code, while a source-to-source compiler translates from one coding language to another in text code. Both are programming tools.
The fundamental use of a cross compiler is to separate the build environment from target environment. This is useful in several situations:
Embedded computers where a device has highly limited resources. For example, a microwave oven will have an extremely small computer to read its keypad and door sensor, provide output to a digital display and speaker, and to control the microwave for cooking food. This computer is generally not powerful enough to run a compiler, a file system, or a development environment.
Compiling for multiple machines. For example, a company may wish to support several different versions of an operating system or to support several different operating systems. By using a cross compiler, a single build environment can be set up to compile for each of these targets.
Compiling on a server farm. Similar to compiling for multiple machines, a complicated build that involves many compile operations can be executed across any machine that is free, regardless of its underlying hardware or the operating system version that it is running.
Bootstrapping to a new platform. When developing software for a new platform, or the emulator of a future platform, one uses a cross compiler to compile necessary tools such as the operating system and a native compiler.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'étudiant comprendra les architectures des systèmes embarqués microprogrammés, les architectures des microprocesseurs, hiérarchie de mémoire et les différents périphériques de Entrée/Sortie (E/S) inc
Ce cours aborde la programmation de systèmes embarqués: la cross-compilation, l'utilisation d'une FPU dans des microcontrôleurs, l'utilisation d'instructions DSP et les mécanismes à disposition dans l
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
An intermediate representation (IR) is the data structure or code used internally by a compiler or virtual machine to represent source code. An IR is designed to be conducive to further processing, such as optimization and translation. A "good" IR must be accurate – capable of representing the source code without loss of information – and independent of any particular source or target language. An IR may take one of several forms: an in-memory data structure, or a special tuple- or stack-based code readable by the program.
A scripting language or script language is a programming language that is used to manipulate, customize, and automate the facilities of an existing system. Scripting languages are usually interpreted at runtime rather than compiled. A scripting language's primitives are usually elementary tasks or API calls, and the scripting language allows them to be combined into more programs. Environments that can be automated through scripting include application software, text editors, web pages, operating system shells, embedded systems, and computer games.
In computer programming, a runtime system or runtime environment is a sub-system that exists both in the computer where a program is created, as well as in the computers where the program is intended to be run. The name comes from the compile time and runtime division from compiled languages, which similarly distinguishes the computer processes involved in the creation of a program (compilation) and its execution in the target machine (the run time). Most programming languages have some form of runtime system that provides an environment in which programs run.
Compilers assure that any produced optimized code is semantically equivalent to the original code. However, even "correct" compilers may introduce security bugs as security properties go beyond translation correctness. Security bugs introduced by such corr ...
The task of learning a quantum circuit to prepare a given mixed state is a fundamental quantum subroutine. We present a variational quantum algorithm (VQA) to learn mixed states which is suitable for near-term hardware. Our algorithm represents a generaliz ...
A central task in high-level synthesis is scheduling: the allocation of operations to clock cycles. The classic approach to scheduling is static, in which each operation is mapped to a clock cycle at compile-time, but recent years have seen the emergence o ...