Jean-Philippe AnsermetJean-Philippe Ansermet was born March 1, 1957 in Lausanne (legal origin Vaumarcus, NE). He obtained a diploma as physics engineer of EPFL in 1980. He went on to get a PhD from the University of Illinois at Urbana-Champaign where, from 1985 to 1987, he persued as post-doc with Prof. Slichter his research on catalysis by solid state NMR studies of molecules bound to the surface of catalysts. From 1987 to 1992 he worked at the materials research center of Ciba-Geigy, on polymers for microelectronics, composites, dielectrics and organic charge transfer complexes. In March 1992, as professor of experimental physics, he developed a laboratory on the theme of nanostructured materials and turned full professor in 1995. Since 1992, he teaches classical mechanics, first to future engineering students, since 2004 to physics majors. Since 2000, he teaches thermodynamics also, to the same group of students. He offers a graduate course in spintronics, and another on spin dynamics. His research activities concern the fabrication and properties of magnetic nanostructures produced by electrodeposition. His involvement since the early days of spintronics have allowed him to gain recognition for his work on giant magnetoresistance (CPP-GMR), magnetic relaxation of single nanostructures, and was among the leading groups demonstrating magnetization reversal by spin-polarized currents. Furthermore, his group uses nuclear magnetic resonance , on the one hand as means of investigation of surfaces and electrodes, on the other hand, as a local probe of the electronic properties of complex ferromagnetic oxides.
Aurelio BayAurelio Bay graduated in physics at the University of Lausanne (UNIL) in 1980 and got his PhD degree from the same institution in 1986 for a work on the determination of the axial form factor of the ? meson.
He then went to Lawrence Berkeley Laboratories (LBL), USA as a post doc for two years, where he worked on the TPC/2? Electromagnetic Calorimeter and the SSC/LHC detector. He then came back to Europe and was named Maître Assistant at University of Geneva till 1994, where he started working at the L3 experiment of LEP at CERN.
He was appointed Assistant Professor at the University of Lausanne in 1994 and Full Professor in 1998, continuing working at LEP, LEP2 and LHCb at CERN , and starting a collaboration at BELLE experiment at KEK, Tsukuba (Japan).
At the University of Lausanne he was Director of the Institute of High Energy Physics, Deputy Director of the Physics Department and Deputy of the Dean of the Faculty of Sciences.
In 2003, following the merge of UNIL physics department into the EPFL School of Basic Sciences, he was appointed Full Professor at Ecole Polytechnique Fédérale de Lausanne (EPFL), and Director of the EPFL Laboratory of High Energy Physics.
Olivier SchneiderAfter his thesis defense in particle physics in 1989 at University of Lausanne, Olivier Schneider joins LBL, the Lawrence Berkeley Laboratory (California), to work on the CDF experiment at the Tevatron in Fermilab (Illinois), first as a research fellow supported by the Swiss National Science Foundation, and later as a post-doc at LBL. He participates in the construction and commissioning of the first silicon vertex detector to operate successfully at a hadron collider; this detector enabled the discovery of the sixth quark, named "top". Since 1994, he comes back to Europe and participates in the ALEPH experiment at CERN's Large Electron-Positron Collider, as CERN fellow and then as CERN scientific staff. He specializes in heavy flavour physics. In 1998, he becomes associate professor at University of Lausanne, then extraordinary professor at the Swiss Institute of Technology Lausanne (EPFL) in 2003, and finally full professor at EPFL in 2010. Having worked since 1997 on the preparation of the LHCb experiment at CERN's Large Hadron Collider, which started operation in 2009, he is now analyzing the first data. He also contributes since 2001 to the exploitation of the data recorded at the Belle experiment (KEK laboratory, Tsukuba, Japan). These two experiments study mainly the decays of hadrons containing a b quark, as well CP violation, i.e. the non-invariance under the symmetry between matter and antimatter.