Concept

Multiple-prism grating laser oscillator

Summary
Multiple-prism grating laser oscillators, or MPG laser oscillators, use multiple-prism beam expansion to illuminate a diffraction grating mounted either in Littrow configuration or grazing-incidence configuration. Originally, these narrow-linewidth tunable dispersive oscillators were introduced as multiple-prism Littrow (MPL) grating oscillators, or hybrid multiple-prism near-grazing-incidence (HMPGI) grating cavities, in organic dye lasers. However, these designs were quickly adopted for other types of lasers such as gas lasers, diode lasers, and more recently fiber lasers. Multiple-prism grating laser oscillators can be excited either electrically, as in the case of gas lasers and semiconductor lasers, or optically, as in the case of crystalline lasers and organic dye lasers. In the case of optical excitation it is often necessary to match the polarization of the excitation laser to the polarization preference of the multiple-prism grating oscillator. This can be done using a polarization rotator thus improving the laser conversion efficiency. The multiple-prism dispersion theory is applied to design these beam expanders either in additive configuration, thus adding or subtracting their dispersion to the dispersion of the grating, or in compensating configuration (yielding zero dispersion at a design wavelength) thus allowing the diffraction grating to control the tuning characteristics of the laser cavity. Under those conditions, that is, zero dispersion from the multiple-prism beam expander, the single-pass laser linewidth is given by where is the beam divergence and M is the beam magnification provided by the beam expander that multiplies the angular dispersion provided by the diffraction grating. In the case of multiple-prism beam expanders this factor can be as high as 100–200. When the dispersion of the multiple-prism expander is not equal to zero, then the single-pass linewidth is given by where the first differential refers to the angular dispersion from the grating and the second differential refers to the overall dispersion from the multiple-prism beam expander.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (41)
Related concepts (1)
Dye laser
A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds.
Related courses (4)
MICRO-423: Optics laboratories (spring)
This laboratory work allows students to deepen their understanding of optical instruments, optoelectronic devices and diagnostic methods. Students will be introduced in state of the art optical instru
CH-456: Molecular spectroscopy in chemistry
Summary The course first, overviews the necessary background topics in geometrical and wave optics, quantum mechanics. This follows by studying the fundamentals of lasers, particular types of lasers
MICRO-422: Lasers: theory and modern applications
This course gives an introduction to Lasers by both considering fundamental principles and applications. Topics that are covered include the theory of lasers, laser resonators and laser dynamics. In
Show more