In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph ().
The cardinality of the natural numbers is (read aleph-nought or aleph-zero; the term aleph-null is also sometimes used), the next larger cardinality of a well-ordered set is aleph-one then and so on. Continuing in this manner, it is possible to define a cardinal number for every ordinal number as described below.
The concept and notation are due to Georg Cantor,
who defined the notion of cardinality and realized that infinite sets can have different cardinalities.
The aleph numbers differ from the infinity () commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the extended real number line.
(aleph-zero, also aleph-nought or aleph-null) is the cardinality of the set of all natural numbers, and is an infinite cardinal. The set of all finite ordinals, called or (where is the lowercase Greek letter omega), has cardinality . A set has cardinality if and only if it is countably infinite, that is, there is a bijection (one-to-one correspondence) between it and the natural numbers. Examples of such sets are
the set of all integers,
any infinite subset of the integers, such as the set of all square numbers or the set of all prime numbers,
the set of all rational numbers,
the set of all constructible numbers (in the geometric sense),
the set of all algebraic numbers,
the set of all computable numbers,
the set of all computable functions,
the set of all binary strings of finite length, and
the set of all finite subsets of any given countably infinite set.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Let Omega subset of R-n be an open set, A is an element of R-nxn and G : Omega -> R-nxn be given. We look for a solution u : Omega -> R-n of the equation A del u + (del u)(t) A = G We also study the associated Dirichlet problem. (C) 2020 Elsevier Ltd. All ...
PERGAMON-ELSEVIER SCIENCE LTD2020
Related concepts (32)
In an open, bounded subset Omega of R-N such that 0 is an element of Omega we consider the nonlinear eigenvalue problem -Sigma(N)(i,j,=1) partial derivative(i){A(ij)(x)partial derivative(j)u} + V(x)u + n(x,del u)+ g(x, u) = lambda u in Omega integral(Omega ...
Predictions of cloud droplet activation in the late summertime (September) central Arctic Ocean are made using κ-Köhler theory with novel observations of the aerosol chemical composition from a high-resolution time-of-flight chemical ionization mass spectr ...
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers , sometimes called the continuum. It is an infinite cardinal number and is denoted by (lowercase Fraktur "c") or . The real numbers are more numerous than the natural numbers . Moreover, has the same number of elements as the power set of Symbolically, if the cardinality of is denoted as , the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities.
In mathematics, transfinite numbers or infinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets. The term transfinite was coined in 1895 by Georg Cantor, who wished to avoid some of the implications of the word infinite in connection with these objects, which were, nevertheless, not finite.
In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A. This definition of cofinality relies on the axiom of choice, as it uses the fact that every non-empty set of cardinal numbers has a least member. The cofinality of a partially ordered set A can alternatively be defined as the least ordinal x such that there is a function from x to A with cofinal . This second definition makes sense without the axiom of choice.