In computer programming, an indentation style is a convention governing the indentation of blocks of code to convey program structure. This article largely addresses the free-form languages, such as C and its descendants, but can be (and often is) applied to most other programming languages (especially those in the curly bracket family), where whitespace is otherwise insignificant. Indentation style is only one aspect of programming style.
Indentation is not a requirement of most programming languages, where it is used as secondary notation. Rather, indenting helps better convey the structure of a program to human readers. Especially, it is used to clarify the link between control flow constructs such as conditions or loops, and code contained within and outside of them. However, some languages (such as Python and occam) use indentation to determine the structure instead of using braces or keywords; this is termed the off-side rule. In such languages, indentation is meaningful to the compiler or interpreter; it is more than only a clarity or style issue.
This article uses the term brackets to refer to parentheses, and the term braces to refer to curly brackets.
The main difference between indentation styles lies in the placing of the braces of the compound statement ({...}) that often follows a control statement (if, while, for...). The table below shows this placement for the style of statements discussed in this article; function declaration style is another case. The style for brace placement in statements may differ from the style for brace placement of a function definition. For consistency, the indentation depth has been kept constant at 4 spaces, regardless of the preferred indentation depth of each style.
The displayed width for tabs can be set to arbitrary values in most programming editors, including Notepad++ (MS-Windows), TextEdit (MacOS/X), Emacs (Unix), vi (Unix), and nano (Unix). In addition, these editors can be configured to generate a mix of tabs and spaces or to convert between tabs and spaces, to match specific indentation schemes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio
This course provides students with a working knowledge of macroeconomic models that explicitly incorporate financial markets. The goal is to develop a broad and analytical framework for analyzing the
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
A computer programming language is said to adhere to the off-side rule of syntax if blocks in that language are expressed by their indentation. The term was coined by Peter Landin, possibly as a pun on the offside rule in association football. This is contrasted with free-form languages, notably curly-bracket programming languages, where indentation has no computational meaning and indent style is only a matter of coding conventions and formatting. Off-side-rule languages are also described as having significant indentation.
In computer science, the syntax of a computer language is the rules that define the combinations of symbols that are considered to be correctly structured statements or expressions in that language. This applies both to programming languages, where the document represents source code, and to markup languages, where the document represents data. The syntax of a language defines its surface form. Text-based computer languages are based on sequences of characters, while visual programming languages are based on the spatial layout and connections between symbols (which may be textual or graphical).
Rust is a multi-paradigm, general-purpose programming language that emphasizes performance, type safety, and concurrency. It enforces memory safety—ensuring that all references point to valid memory—without requiring the use of a garbage collector or reference counting present in other memory-safe languages. To simultaneously enforce memory safety and prevent data races, its "borrow checker" tracks the object lifetime of all references in a program during compilation.
We present syntax rewriting rules that translate Scala 2 code into Scala 3. Two major syntactic changes are introduced: new control structure syntax and significant indentation. We describe the design and the implementation of these rules and evaluate thei ...
2024
, , , ,
There is a bias in the inference pipeline of most diffusion models. This bias arises from a signal leak whose distribution deviates from the noise distribution, creating a discrepancy between training and inference processes. We demonstrate that this signa ...
2024
, , ,
We present Diffusion in Style, a simple method to adapt Stable Diffusion to any desired style, using only a small set of target images. It is based on the key observation that the style of the images generated by Stable Diffusion is tied to the initial lat ...