In functional analysis, a branch of mathematics, a strictly singular operator is a bounded linear operator between normed spaces which is not bounded below on any infinite-dimensional subspace. Let X and Y be normed linear spaces, and denote by B(X,Y) the space of bounded operators of the form . Let be any subset. We say that T is bounded below on whenever there is a constant such that for all , the inequality holds. If A=X, we say simply that T is bounded below. Now suppose X and Y are Banach spaces, and let and denote the respective identity operators. An operator is called inessential whenever is a Fredholm operator for every . Equivalently, T is inessential if and only if is Fredholm for every . Denote by the set of all inessential operators in . An operator is called strictly singular whenever it fails to be bounded below on any infinite-dimensional subspace of X. Denote by the set of all strictly singular operators in . We say that is finitely strictly singular whenever for each there exists such that for every subspace E of X satisfying , there is such that . Denote by the set of all finitely strictly singular operators in . Let denote the closed unit ball in X. An operator is compact whenever is a relatively norm-compact subset of Y, and denote by the set of all such compact operators. Strictly singular operators can be viewed as a generalization of compact operators, as every compact operator is strictly singular. These two classes share some important properties. For example, if X is a Banach space and T is a strictly singular operator in B(X) then its spectrum satisfies the following properties: (i) the cardinality of is at most countable; (ii) (except possibly in the trivial case where X is finite-dimensional); (iii) zero is the only possible limit point of ; and (iv) every nonzero is an eigenvalue. This same "spectral theorem" consisting of (i)-(iv) is satisfied for inessential operators in B(X). Classes , , , and all form norm-closed operator ideals.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.