Concept

X.509

Summary
In cryptography, X.509 is an International Telecommunication Union (ITU) standard defining the format of public key certificates. X.509 certificates are used in many Internet protocols, including TLS/SSL, which is the basis for HTTPS, the secure protocol for browsing the web. They are also used in offline applications, like electronic signatures. An X.509 certificate binds an identity to a public key using a digital signature. A certificate contains an identity (a hostname, or an organization, or an individual) and a public key (RSA, DSA, ECDSA, ed25519, etc.), and is either signed by a certificate authority or is self-signed. When a certificate is signed by a trusted certificate authority, or validated by other means, someone holding that certificate can use the public key it contains to establish secure communications with another party, or validate documents digitally signed by the corresponding private key. X.509 also defines certificate revocation lists, which are a means to distribute information about certificates that have been deemed invalid by a signing authority, as well as a certification path validation algorithm, which allows for certificates to be signed by intermediate CA certificates, which are, in turn, signed by other certificates, eventually reaching a trust anchor. X.509 is defined by the International Telecommunications Union's "Standardization Sector" (ITU-T's SG17), in ITU-T Study Group 17 and is based on ASN.1, another ITU-T standard. X.509 was initially issued on July 3, 1988, and was begun in association with the X.500 standard. The first tasks of it was providing users with secure access to information resources and avoiding a cryptographic man-in-the-middle attack. It assumes a strict hierarchical system of certificate authorities (CAs) for issuing the certificates. This contrasts with web of trust models, like PGP, where anyone (not just special CAs) may sign and thus attest to the validity of others' key certificates. Version 3 of X.509 includes the flexibility to support other topologies like bridges and meshes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.