Axiom of regularityIn mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set A contains an element that is disjoint from A. In first-order logic, the axiom reads: The axiom of regularity together with the axiom of pairing implies that no set is an element of itself, and that there is no infinite sequence (an) such that ai+1 is an element of ai for all i.
Forcing (mathematics)In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object . Forcing was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory.
Grothendieck universeIn mathematics, a Grothendieck universe is a set U with the following properties: If x is an element of U and if y is an element of x, then y is also an element of U. (U is a transitive set.) If x and y are both elements of U, then is an element of U. If x is an element of U, then P(x), the power set of x, is also an element of U. If is a family of elements of U, and if I is an element of U, then the union is an element of U. A Grothendieck universe is meant to provide a set in which all of mathematics can be performed.
Inner modelIn set theory, a branch of mathematical logic, an inner model for a theory T is a substructure of a model M of a set theory that is both a model for T and contains all the ordinals of M. Let be the language of set theory. Let S be a particular set theory, for example the ZFC axioms and let T (possibly the same as S) also be a theory in . If M is a model for S, and N is an -structure such that N is a substructure of M, i.e. the interpretation of in N is N is a model for T the domain of N is a transitive class of M N contains all ordinals of M then we say that N is an inner model of T (in M).
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Reflection principleIn set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that, with respect to any given property, resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to , while stronger forms can be new and very powerful axioms for set theory. The name "reflection principle" comes from the fact that properties of the universe of all sets are "reflected" down to a smaller set.
Converse relationIn mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation, The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse.
Von Neumann universeIn set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted by V, is the class of hereditary well-founded sets. This collection, which is formalized by Zermelo–Fraenkel set theory (ZFC), is often used to provide an interpretation or motivation of the axioms of ZFC. The concept is named after John von Neumann, although it was first published by Ernst Zermelo in 1930. The rank of a well-founded set is defined inductively as the smallest ordinal number greater than the ranks of all members of the set.
Complement (set theory)In set theory, the complement of a set A, often denoted by A∁ (or A′), is the set of elements not in A. When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set U, the absolute complement of A is the set of elements in U that are not in A. The relative complement of A with respect to a set B, also termed the set difference of B and A, written is the set of elements in B that are not in A.
Venn diagramA Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science. A Venn diagram uses simple closed curves drawn on a plane to represent sets. Very often, these curves are circles or ellipses.