Concept

Transition metal oxo complex

A transition metal oxo complex is a coordination complex containing an oxo ligand. Formally O2-, an oxo ligand can be bound to one or more metal centers, i.e. it can exist as a terminal or (most commonly) as bridging ligands (Fig. 1). Oxo ligands stabilize high oxidation states of a metal. They are also found in several metalloproteins, for example in molybdenum cofactors and in many iron-containing enzymes. One of the earliest synthetic compounds to incorporate an oxo ligand is potassium ferrate (K2FeO4), which was likely prepared by Georg E. Stahl in 1702. A common reaction exhibited by metal-oxo compounds is olation, the condensation process that converts low molecular weight oxides to polymers with M-O-M linkages. Olation often begins with the deprotonation of a metal-hydroxo complex. It is the basis for mineralization and the precipitation of metal oxides. For the oxides of d0 metals, VV, NbV, TaV, MoVI, and WVI, the olation process affords polyoxometallates, a large class of molecular metal oxides. Metal oxo complexes are intermediates in many metal-catalyzed oxidation reactions. Oxygen-atom transfer is common reaction of particular interest in organic chemistry and biochemistry. Some metal-oxos are capable of transferring their oxo ligand to organic substrates. One such example of this type of reactivity is from and enzyme superfamily Molybdenum oxotransferase. In water oxidation catalysis, metal oxo complexes are intermediates in the conversion of water to O2. Transition metal-oxo's are also capable of abstracting strong C–H, N–H, and O–H bonds. Cytochrome P450 contains a high-valent iron-oxo which is capable of abstracting hydrogen atoms from strong C–H bonds. Some of the longest known and most widely used oxo compounds are oxidizing agents such as potassium permanganate (KMnO4) and osmium tetroxide (OsO4). Compounds such as these are widely used for converting alkenes to vicinal diols and alcohols to ketones or carboxylic acids. More selective or gentler oxidizing reagents include pyridinium chlorochromate (PCC) and pyridinium dichromate (PDC).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.