Summary
Endosulfan is an off-patent organochlorine insecticide and acaricide that is being phased out globally. It became a highly controversial agrichemical due to its acute toxicity, potential for bioaccumulation, and role as an endocrine disruptor. Because of its threats to human health and the environment, a global ban on the manufacture and use of endosulfan was negotiated under the Stockholm Convention in April 2011. The ban has taken effect in mid-2012, with certain uses exempted for five additional years. More than 80 countries, including the European Union, Australia, New Zealand, several West African nations, the United States, Brazil, and Canada had already banned it or announced phase-outs by the time the Stockholm Convention ban was agreed upon. It is still used extensively in India and China despite laws against its use. It is also used in a few other countries. It is produced by the Israeli firm Makhteshim Agan and several manufacturers in India and China. On 13.05.2011, the India Supreme Court ordered a ban on the production and sale of endosulfan in India, pending further notice. Endosulfan has been used in agriculture around the world to control insect pests including whiteflies, aphids, leafhoppers, Colorado potato beetles and cabbage worms. Due to its unique mode of action, it is useful in resistance management; however, as it is not specific, it can negatively impact populations of beneficial insects. It is, however, considered to be moderately toxic to honey bees, and it is less toxic to bees than organophosphate insecticides. The World Health Organization estimated worldwide annual production to be about 9,000 tonnes (t) in the early 1980s. From 1980 to 1989, worldwide consumption averaged 10,500 tonnes per year, and for the 1990s use increased to 12,800 tonnes per year. Endosulfan is a derivative of hexachlorocyclopentadiene, and is chemically similar to aldrin, chlordane, and heptachlor. Specifically, it is produced by the Diels-Alder reaction of hexachlorocyclopentadiene with cis-butene-1,4-diol and subsequent reaction of the adduct with thionyl chloride.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.