François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Benoît Jean Dominique FerrariDr. Benoît J.D. Ferrari studied Biochemistry and Biology and completed his PhD in Ecotoxicology at the University of Lorraine (Metz, France) in 2000. After several years at the University of Geneva (Forel F.A. Institute, Geneva, Switzerland; 2002-2008) and Irstea (Formerly Cemagref, Lyon, France; 2000-2002 and 2008-2013), he joined the Swiss Centre of Applied Ecotoxicology (Centre Ecotox Eawag/EPFL) in October 2013 as group leader of the soil and sediment ecotoxicology group at Lausanne. During his different mandates, he was implied as (co-)proponent in different research projects supported e.g. by the Swiss Federal Office for the Environment, the Swiss National Science Foundation, the French National Research Agency or the European Framework Programme for Research. His main areas of interest cover the ecodynamic of contaminants and their impact on the ecophysiology of organisms. Particularly, he is involved in 1) the development of exposure and effect indicators to evaluate the chemical stresses, 2) the integration of such indicators in laboratory- and field-based approaches to assess the quality of aquatic ecosystems, 3) the development of adapted bioassays for active biomonitoring, and 4) the transfer of such ecotoxicological tools and approaches towards end-users.
Christof HolligerOriginaire d'Adliswil, Christof Holliger est né en 1959. Diplômé de l'ETHZ en biologie en 1984, il mène des travaux de recherche dans le domaine de la microbiologie environnementale à l'Université d'Agriculture de Wageningen (Pays-Bas) où il obtient son doctorat en Science de l'environnement en 1992. En 1992, il retourne en Suisse engagé comme collaborateur scientifique et chef de groupe à l'Institut Fédéral pour l'Aménagement, l'Epuration et la Protection des Eaux (EAWAG) à Kastanienbaum. Il y continue ses recherches sur la déchloruration réductrice, commencées aux Pays-Bas, et dirige des travaux sur la réduction des composés nitroaromatiques, la réduction du fer et la méthanogenèse psychrophile dans les sédiments des lacs. En octobre 1998, il est nommé professeur assistant en biotechnologie environnementale au Département de génie rural de l'EPFL. Ses recherches visent l'application des micro-organismes anaérobies pour le traitement des eaux résiduaires. En novembre 2004, il est nommé professeur associé et devient responsable du laboratoire de biotechnologie environnementale à la Faculté de l'Environnement naturel, architectural et construit. L'utilisation des techniques de la biologie moléculaire pour la caractérisation des communautés microbiennes impliquées dans le biotraitement de l'air, des eaux et des sols pollués est un outil clé dans les différents projets de recherche visants le développement des nouveaux procédés de traitement.
Jan Van HerleBorn in Antwerp, Belgium. In Switzerland since 1983. Became Swiss citizen in 2004 out of conviction of principles of democracy and bottom-up participation. No double nationality. Village Council Member for 2 five-year mandates in 2006-2016.
1987 : Chemist from Basel University (CH).
1988 : Post-graduate IT diploma from Basel Engineering School.
1989 : Industry internship ABB Baden (CH).
1990-1993 : PhD Thesis EPFL, on Solid Oxide Fuel Cell cathode reaction mechanisms.
1994-1995 : Japanese Postdoctoral Fellowship in Tsukuba, Japan, on ceramic powders.
1995-2000 : Researcher at EPFL, Dpt. Chemistry : project responsible in PPM2 (materials), FP4-BriteEuram, NEDO (Japan), Swiss Gas Union (CH, oxygen membranes).
1998-2000 : Masters in Energy Technology, EPFL.
2000 : Cofounder of HTceramix SA (EPFL spin-off), now based in Yverdon (14 employees). Taken over by SOLIDpower in 2007, now 250 employees with 70 MCHF raised.
2000 : 1st Assistant and lecturer at LENI (STI-IGM) : fuel cell group responsible, projects on biogas (Federal Energy Office), woodgas (CCEM), fuel cell stacking (CTI, FP6, FNS), ceramic separation membranes (COST, FNS), microtubes (STI Seed), stability/lifetime/reliability in fuel cells (Electricité de France, swisselectric research). Currently 4 Ph D theses ongoing, 14 theses concluded, of which 5 colateral with SB and IMX. M.E.R. since Nov 2008.
Total funding raised so far >18 MCHF (50% as main applicant; 30% outside CH; 20% industry).
Scientific output : >135 peer-reviewed publications, >120 conference papers, 40 invited presentations (8 keynotes), >70 granted proposals.
Fluent in 5 languages (Dutch, French, German ( Swiss-german), English, Spanish).