Concept

Finite type invariant

In the mathematical theory of knots, a finite type invariant, or Vassiliev invariant (so named after Victor Anatolyevich Vassiliev), is a knot invariant that can be extended (in a precise manner to be described) to an invariant of certain singular knots that vanishes on singular knots with m + 1 singularities and does not vanish on some singular knot with 'm' singularities. It is then said to be of type or order m. We give the combinatorial definition of finite type invariant due to Goussarov, and (independently) Joan Birman and Xiao-Song Lin. Let V be a knot invariant. Define V1 to be defined on a knot with one transverse singularity. Consider a knot K to be a smooth embedding of a circle into . Let K be a smooth immersion of a circle into with one transverse double point. Then where is obtained from K by resolving the double point by pushing up one strand above the other, and K_- is obtained similarly by pushing the opposite strand above the other. We can do this for maps with two transverse double points, three transverse double points, etc., by using the above relation. For V to be of finite type means precisely that there must be a positive integer m such that V vanishes on maps with transverse double points. Furthermore, note that there is notion of equivalence of knots with singularities being transverse double points and V should respect this equivalence. There is also a notion of finite type invariant for 3-manifolds. The simplest nontrivial Vassiliev invariant of knots is given by the coefficient of the quadratic term of the Alexander–Conway polynomial. It is an invariant of order two. Modulo two, it is equal to the Arf invariant. Any coefficient of the Kontsevich invariant is a finite type invariant. The Milnor invariants are finite type invariants of string links. Michael Polyak and Oleg Viro gave a description of the first nontrivial invariants of orders 2 and 3 by means of Gauss diagram representations. Mikhail N. Goussarov has proved that all Vassiliev invariants can be represented that way.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.