Summary
An acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory. Their importance becomes apparent in analyzing acid–base reactions for gaseous or liquid species, or when acid or base character may be somewhat less apparent. The first of these concepts was provided by the French chemist Antoine Lavoisier, around 1776. It is important to think of the acid-base reaction models as theories that complement each other. For example, the current Lewis model has the broadest definition of what an acid and base are, with the Brønsted-Lowry theory being a subset of what acids and bases are, and the Arrhenius theory being the most restrictive. The concept of an acid-base reaction was first proposed in 1754 by Guillaume-François Rouelle, who introduced the word "base" into chemistry to mean a substance which reacts with an acid to give it solid form (as a salt). Bases are mostly bitter in nature. The first scientific concept of acids and bases was provided by Lavoisier in around 1776. Since Lavoisier's knowledge of strong acids was mainly restricted to oxoacids, such as nitric acidHNO3 (nitric acid) and sulfuric acidH2SO4 (sulfuric acid), which tend to contain central atoms in high oxidation states surrounded by oxygen, and since he was not aware of the true composition of the hydrohalic acids (HF, HCl, HBr, and HI), he defined acids in terms of their containing oxygen, which in fact he named from Greek words meaning "acid-former" (from the Greek ὀξύς (oxys) meaning "acid" or "sharp" and γεινομαι (geinomai) meaning "engender"). The Lavoisier definition held for over 30 years, until the 1810 article and subsequent lectures by Sir Humphry Davy in which he proved the lack of oxygen in hydrogen sulfideH2S, H2Te, and the hydrohalic acids.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.