In mathematics, a moduli scheme is a moduli space that exists in the developed by Alexander Grothendieck. Some important moduli problems of algebraic geometry can be satisfactorily solved by means of scheme theory alone, while others require some extension of the 'geometric object' concept (algebraic spaces, algebraic stacks of Michael Artin).
Work of Grothendieck and David Mumford (see geometric invariant theory) opened up this area in the early 1960s. The more algebraic and abstract approach to moduli problems is to set them up as a representable functor question, then apply a criterion that singles out the representable functors for schemes. When this programmatic approach works, the result is a fine moduli scheme. Under the influence of more geometric ideas, it suffices to find a scheme that gives the correct geometric points. This is more like the classical idea that the moduli problem is to express the algebraic structure naturally coming with a set (say of isomorphism classes of elliptic curves).
The result is then a coarse moduli scheme. Its lack of refinement is, roughly speaking, that it doesn't guarantee for families of objects what is inherent in the fine moduli scheme. As Mumford pointed out in his book Geometric Invariant Theory, one might want to have the fine version, but there is a technical issue (level structure and other 'markings') that must be addressed to get a question with a chance of having such an answer.
Teruhisa Matsusaka proved a result, now known as Matsusaka's big theorem, establishing a necessary condition on a moduli problem for the existence of a coarse moduli scheme.
Mumford proved that if g > 1, there exists a coarse moduli scheme of smooth curves of genus g, which is quasi-projective. According to a recent survey by János Kollár, it "has a rich and intriguing intrinsic geometry which is related to major questions in many branches of mathematics and theoretical physics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of this course/seminar is to introduce the students to some contemporary aspects of geometric group theory. Emphasis will be put on Artin's Braid groups and Thompson's groups.
Explores the evolution of electric fields with elliptical polarization and the superposition of circular polarizations.
Explores viscoelasticity in polymer materials, emphasizing time-dependent behavior and transitions in properties, and discusses Dynamic Mechanical Analysis.
Explores viscoelastic materials, stress relaxation, and mechanical models for polymer behavior.
We develop a framework to construct moduli spaces of Q-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of Q-stable pair. We show that these choices give a proper moduli space with projective coarse moduli spac ...
In this text, we will show the existence of lattice packings in a family of dimensions by employing division algebras. This construction is a generalization of Venkatesh's lattice packing result Venkatesh (Int Math Res Notices 2013(7): 1628-1642, 2013). In ...
SPRINGER HEIDELBERG2023
, ,
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...