Hydra is a natural satellite of Pluto, with a diameter of approximately across its longest dimension. It is the second-largest moon of Pluto, being slightly larger than Nix. Hydra was discovered along with Nix by astronomers using the Hubble Space Telescope on 15 May 2005, and was named after the Hydra, the nine-headed underworld serpent in Greek mythology. By distance, Hydra is the fifth and outermost moon of Pluto, orbiting beyond Pluto's fourth moon Kerberos.
Hydra has a highly reflective surface caused by the presence of water ice, similar to other Plutonian moons. Hydra's reflectivity is intermediate, in between those of Pluto and Charon. The New Horizons spacecraft imaged Pluto and its moons in July 2015 and returned multiple images of Hydra.
Members of the New Horizons team suspected that Pluto and Charon might be accompanied by other small, distant moons, weakly bound to the Pluto system. They used the Hubble Space Telescope to test this hypothesis. This lead to the discovery of Nix and Hydra – both surprisingly close to Pluto/Charon – and that no significant moons existed in Pluto's extended sphere of influence.
The discovery images were taken on 15 May 2005 and 18 May 2005. Hydra and Nix were independently discovered by Max J. Mutchler on 15 June 2005 and by Andrew J. Steffl on 15 August 2005. The discoveries were announced on 31 October 2005, after confirmation by precovering archival Hubble images of Pluto from 2002. The two newly discovered moons were subsequently provisionally designated S/2005 P 1 for Hydra and S/2005 P 2 for Nix. The moons were informally referred to as "P1" and "P2" respectively, by the discovery team.
The name Hydra was approved on 21 June 2006 by the International Astronomical Union (IAU) and was announced along with the naming of Nix in the IAU Circular 8723. Hydra was named after the Lernaean Hydra, a nine-headed serpent that battled Heracles in Greek mythology. Particularly, the nine heads of Hydra subtly references Pluto's former ninth planetary status.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In astronomy, precovery (short for pre-discovery recovery) is the process of finding the image of an object in images or photographic plates predating its discovery, typically for the purpose of calculating a more accurate orbit. This happens most often with minor planets, but sometimes a comet, a dwarf planet, a natural satellite, or a star is found in old archived images; even exoplanet precovery observations have been obtained.
Nix is a natural satellite of Pluto, with a diameter of across its longest dimension. It was discovered along with Pluto's outermost moon Hydra on 15 May 2005 by astronomers using the Hubble Space Telescope, and was named after Nyx, the Greek goddess of the night. Nix is the third moon of Pluto by distance, orbiting between the moons Styx and Kerberos. Nix was imaged along with Pluto and its other moons by the New Horizons spacecraft as it flew by the Pluto system in July 2015.
Kerberos is a small natural satellite of Pluto, about in its longest dimension. Kerberos is also the second-smallest moon of Pluto, after Styx. It was the fourth moon of Pluto to be discovered and its existence was announced on 20 July 2011. It was imaged, along with Pluto and its four other moons, by the New Horizons spacecraft in July 2015. The first image of Kerberos from the flyby was released to the public on 22 October 2015.
The coalescence of two coplanar fractures growing under the symmetric injection of a Newtonian fluid from two point sources provides a unique data set to validate theoretical predictions of hydraulic fracture (HF) growth. We test the theoretical prediction ...
2021
The Naturally Buckling Brace (NBB) is a steel brace developed by the writers, which consists of a high-strength and low-yielding steel channel arranged in parallel with an intentional eccentricity along the brace length. The NBB deforms with a novel mechan ...
International Association of Earthquake Engineering2017
The present paper proposes an improved design of conventional buckling braces (CBBs) by introducing intentional eccentricity along the brace length. The proposed brace is named the Brace with Intentional Eccentricity (BIE). Due to the inherent action momen ...
International Association of Earthquake Engineering2017