Volcanic gases are gases given off by active (or, at times, by dormant) volcanoes. These include gases trapped in cavities (vesicles) in volcanic rocks, dissolved or dissociated gases in magma and lava, or gases emanating from lava, from volcanic craters or vents. Volcanic gases can also be emitted through groundwater heated by volcanic action. The sources of volcanic gases on Earth include: primordial and recycled constituents from the Earth's mantle, assimilated constituents from the Earth's crust, groundwater and the Earth's atmosphere. Substances that may become gaseous or give off gases when heated are termed volatile substances. The principal components of volcanic gases are water vapor (H2O), carbon dioxide (CO2), sulfur either as sulfur dioxide (SO2) (high-temperature volcanic gases) or hydrogen sulfide (H2S) (low-temperature volcanic gases), nitrogen, argon, helium, neon, methane, carbon monoxide and hydrogen. Other compounds detected in volcanic gases are oxygen (meteoric), hydrogen chloride, hydrogen fluoride, hydrogen bromide, sulfur hexafluoride, carbonyl sulfide, and organic compounds. Exotic trace compounds include mercury, halocarbons (including CFCs), and halogen oxide radicals. The abundance of gases varies considerably from volcano to volcano, with volcanic activity and with tectonic setting. Water vapour is consistently the most abundant volcanic gas, normally comprising more than 60% of total emissions. Carbon dioxide typically accounts for 10 to 40% of emissions. Volcanoes located at convergent plate boundaries emit more water vapor and chlorine than volcanoes at hot spots or divergent plate boundaries. This is caused by the addition of seawater into magmas formed at subduction zones. Convergent plate boundary volcanoes also have higher H2O/H2, H2O/CO2, CO2/He and N2/He ratios than hot spot or divergent plate boundary volcanoes. Magma contains dissolved volatile components, as described above. The solubilities of the different volatile constituents are dependent on pressure, temperature and the composition of the magma.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
CH-442: Photochemistry I
This course presents the theoretical bases of electronic spectroscopy and molecular photophysics. The principles of the reactivity of excited states of molecules and solids under irradiation are detai
Related lectures (13)
Carbon Cycle: CO2 Storage & Volcanic Emissions
Delves into the carbon cycle, CO2 storage, volcanic emissions, human impact, and nature-inspired solutions for reducing emissions.
Geothermal Energy Systems: Principles and Applications
Provides an overview of geothermal energy systems, covering thermodynamic principles, heat pump technologies, and the classification of geothermal reservoirs.
Climate System: Components and Forcings
Covers the components and forcings of the climate system, including solar radiation, external influences, and internal interactions.
Show more
Related publications (34)

Biomass screening for syngas production by flash photopyrolysis

Hubert Girault, Mathieu Soutrenon, Wanderson Oliveira Da Silva

A few seconds flash photopyrolysis is used as efficient screening tool for the investigation of selected biomass in producing syngas, hydrogen and biochar. This innovative approach allowed rapid pyrolysis of the biomass, which was followed by a precise gas ...
Royal Soc Chemistry2024

The influence of water-saturation on the strength of volcanic rocks and the stability of lava domes

Marie Estelle Solange Violay, Michael Heap

The rocks forming a volcanic edifice or dome are typically saturated or partially-saturated with water. However, most experiments aimed at better understanding the mechanical behaviour of volcanic rocks have been performed on dry samples, and therefore mos ...
2023

Permeability, alteration, and microstructure: A (hopefully) coupled rock physics and geochemical approach to how rock-fluid interactions change permeability

Alexandra Roma Larisa Kushnir

Permeability is a key physical property across all spatial scales in the Earth’s crust and exerts significant control on the behaviour of Earth systems, with implications for natural hazards (e.g., earthquakes, slope instabilities, volcanic eruptions) and ...
2023
Show more
Related units (1)
Related concepts (17)
Lava
Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or underwater, usually at temperatures from . The volcanic rock resulting from subsequent cooling is also often called lava. A lava flow is an outpouring of lava during an effusive eruption. (An explosive eruption, by contrast, produces a mixture of volcanic ash and other fragments called tephra, not lava flows.
Types of volcanic eruptions
Several types of volcanic eruptions—during which lava, tephra (ash, lapilli, volcanic bombs, and volcanic blocks), and assorted gases are expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.
Fumarole
A fumarole (or fumerole) is a vent in the surface of the Earth or other rocky planet from which hot volcanic gases and vapors are emitted, without any accompanying liquids or solids. Fumaroles are characteristic of the late stages of volcanic activity, but fumarole activity can also precede a volcanic eruption and has been used for eruption prediction. Most fumaroles die down within a few days or weeks of the end of an eruption, but a few are persistent, lasting for decades or longer.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.