David Atienza AlonsoDavid Atienza Alonso is an associate professor of EE and director of the Embedded Systems Laboratory (ESL) at EPFL, Switzerland. He received his MSc and PhD degrees in computer science and engineering from UCM, Spain, and IMEC, Belgium, in 2001 and 2005, respectively. His research interests include system-level design methodologies for multi-processor system-on-chip (MPSoC) servers and edge AI architectures. Dr. Atienza has co-authored more than 350 papers, one book, and 12 patents in these previous areas. He has also received several recognitions and award, among them, the ICCAD 10-Year Retrospective Most Influential Paper Award in 2020, Design Automation Conference (DAC) Under-40 Innovators Award in 2018, the IEEE TCCPS Mid-Career Award in 2018, an ERC Consolidator Grant in 2016, the IEEE CEDA Early Career Award in 2013, the ACM SIGDA Outstanding New Faculty Award in 2012, and a Faculty Award from Sun Labs at Oracle in 2011. He has also earned two best paper awards at the VLSI-SoC 2009 and CST-HPCS 2012 conference, and five best paper award nominations at the DAC 2013, DATE 2013, WEHA-HPCS 2010, ICCAD 2006, and DAC 2004 conferences. He serves or has served as associate editor of IEEE Trans. on Computers (TC), IEEE Design & Test of Computers (D&T), IEEE Trans. on CAD (T-CAD), IEEE Transactions on Sustainable Computing (T-SUSC), and Elsevier Integration. He was the Technical Program Chair of DATE 2015 and General Chair of DATE 2017. He served as President of IEEE CEDA in the period 2018-2019 and was GOLD member of the Board of Governors of IEEE CASS from 2010 to 2012. He is a Distinguished Member of ACM and an IEEE Fellow.
Thomas KellerEDUCATION
1992 Dr. sc. techn. (PhD)
Swiss Federal Institute of Technology, Zurich (ETH)
1983 Dipl. Bauing. ETH (MS civil engineering)
Swiss Federal Institute of Technology, Zurich (ETH)
EMPLOYMENT
2007-present, Full Professor of Structural Engineering (100%)
Swiss Federal Institute of Technology, Lausanne (EPFL)
Civil Engineering Institute
1998-2007, Associate Professor of Structural Engineering (80/100%)
Swiss Federal Institute of Technology, Lausanne (EPFL)
Structural Engineering Institute
Foundation of CCLab in 2000
1996-1998, Assistant Professor of Structural Engineering (50%)
Swiss Federal Institute of Technology, Zurich (ETH)
Department of Architecture
1992-2004, Senior Project Engineer and Joint Owner
Engineering offices in Zug and Zurich
1990-1992, Research Scientist
Swiss Federal Institute of Technology, Zurich (ETH)
Structural Engineering Institute
1986-1990, Project Engineer
Architecture and engineering office Calatrava, Zurich
1983-1986, Teaching and Research Assistant
Swiss Federal Institute of Technology, Zurich (ETH)
Structural Engineering Institute
John Richard ThomeJohn R. Thome is Professor of Heat and Mass Transfer at the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland since 1998, where his primary interests of research are two-phase flow and heat transfer, covering both macro-scale and micro-scale heat transfer and enhanced heat transfer. He directs the Laboratory of Heat and Mass Transfer (LTCM) at the EPFL with a research staff of about 18-20 and is also Director of the Doctoral School in Energy. He received his Ph.D. at Oxford University, England in 1978. He is the author of four books: Enhanced Boiling Heat Transfer (1990), Convective Boiling and Condensation, 3rd Edition (1994), Wolverine Engineering Databook III (2004) and Nucleate Boiling on Micro-Structured Surfaces (2008). He received the ASME Heat Transfer Division's Best Paper Award in 1998 for a 3-part paper on two-phase flow and flow boiling heat transfer published in the Journal of Heat Transfer. He has received the J&E Hall Gold Medal from the U.K. Institute of Refrigeration in February, 2008 for his extensive research contributions on refrigeration heat transfer and more recently the 2010 ASME Heat Transfer Memorial Award. He has published widely on the fundamental aspects of microscale and macroscale two-phase flow and heat transfer and on enhanced boiling and condensation heat transfer.
Jean-Marie Drezet1992-1996: PhD work at Laboratoire de Métallurgie Physique under the supervision of Prof. Michel Rappaz (cf : http://library.epfl.ch/theses/?display=detail&nr=1509) 1997-2000: EMPACT project (European Modelling Programme for Aluminium Casting Technologies) 2001-2004: VIRCAST project (European Virtual Casting) 2005-2006: Study of the sawing process of rolling sheet al. ingots (Alcan Fonds) 2005-2006: WelAIR project (Welding of Airframes, EADS) 2005-2008: study of the electron beam welding of Cu-Cr-Zr alloys (CEA, France) 2006-2008: study of the laser beam welding of Al-Li alloys (EADS, France) 2008-2011: co-supervision with Prof. A. Nussbaumer of the PhD work of C. Acevedo on the influence of residual stresses on the fatigue design of tubular welded joints, http://library.epfl.ch/theses/?nr=5056 2007-2010: co-supervision with Prof. J.-F. Molinari of the PhD work of K. Shahim on the Normal Pressure Hydrocephalus (S. Momjian, HU-Genève et R. Sinkus, ESPCI-Paris), http://library.epfl.ch/theses/?nr=5191 2008-2012: co-supervision with Prof. M. Rappaz of the PhD work of M. Sistaninia on the simulation of solidification cracking using granular models (CCMX-MERU project) 2010-2014: supervision with Prof. M. Rappaz of the PhD work of N. Chobaut on the modelling of stresses during quenching of thick heat treatable aluminium parts (CCMX-MERU project) 2011-2015: supervision with Prof. H. Van Swygenhoven-Moens of the PhD work of P. Schloth on precipitation during quenching of thick heat treatable aluminium parts (CCMX-MERU project) Michel RappazAfter a PhD in solid state physics (1978) at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and a post-doc at Oak Ridge National Laboratory, Michel Rappaz joined the Institute of Materials of EPFL in 1981. After two years in an engineering company, he came back to EPFL in 1984 where he was nominated Adjunct Professor in 1990 and Full Professor in 2003. He retired from EPFL in 2015 and is now Emeritus Professor and independent consultant for several industries and research centres.
His main interests are in phase transformations and solidification, in particular the coupling of macroscopic aspects of heat and mass transfer with microscopic aspects of microstructure and defect formation. Among his diverse achievements, one can mention in particular the development of cellular automata for grain structure predictions and of granular models for hot tearing formation in castings, the coupling of Finite Element method with microscopic models of nucleation and growth, the application of the phase field method to the understanding of various microstructures, the discovery of quasicrystal mediated-nucleation in alloys, and many other studies both fundamental at the microstructure-defect level and more applied at the level of processes.
Some of the software developments have been commercialized by a spin-off company founded by his group in 1991 (Calcom SA), now part of the French company ESI. Michel Rappaz initiated in 1992 an annual postgraduate course on solidification which has been attended by more than 900 participants from all over the world. He is presently collaborating closely with another spin-off company started from his group, Novamet SàrL.
Michel Rappaz has received several awards, in particular the Mathewson co-author award (1994) and author award (1997) of the American Mineral, Metals and Materials Society (TMS), the Koerber foundation award jointly with Profs Y. Bréchet and M. Asbby (1996), the Sainte-Claire Deville Medal (1996) and the Grand Medal (2011) from the French Materials Society, the Bruce Chalmers Award of TMS (2002), the Mc Donald Memorial Lecture award of Canada (2005), the FEMS European Materials Gold Medal (2013) and the Brimacombe Prize of TMS (2015). He is a highly-cited author of ISI, a fellow of ASM, IOP and TMS, and has co-authored more than 200 publications and two books.
John Martin KolinskiDr. Kolinski studied Applied Mathematics (Sc.M.) and Applied Physics (Ph.D.) at Harvard University, completing a PhD under the supervision of L. Mahadevan and Shmuel Rubinstein on the role of air in droplet impact. John did his post-doc at the Hebrew University of Jerusalem in Israel supported by the Fulbright post-doctoral fellowship. At HUJI, he worked on interfacial instabilities in soft matter in the labs of Eran Sharon and Jay Fineberg. John continues his research into interfacial mechanics at EPFL in EMSI, his newly founded laboratory for the study of Engineering Mechanics of Soft Interfaces.
Christian Ludwig2005 - today: Adjunct Professor at EPFL in the field of Solid Waste Treatment and head of the Chemical Processes and Materials research group (CPM) at Paul Scherrer Institute (PSI). Joint EPFL-PSI Professorship on Solid Waste Treatment. 2000 - today: Head, Group of Chemical Processes and Materials (CPM) at Paul Scherrer Institut (PSI). In 2009 the LEM unit was closed and the CPM group is now affiliated to the Bioenergy and Catalysis Laboratory (LBK) of the Energy and Environment Research Division (ENE). Since June 2002 permanent position ("tenure"). 1997 - 1999: Senior Scientist. Paul Scherrer Institut (PSI), General Energy Research Department, Element Cycles Section. 1995 - 1997: Research Fellow. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Department of Resource and Waste Management. 1993 - 1995: Post-doc Fellow. University of California Davis, Department of Land, Air, and Water Resources (LAWR). 1990 - 1993: PhD Student. University of Berne, Department of Inorganic, Analytical, and Physical Chemistry. 1989 - 1990: Master Student. University of Berne, Department of Inorganic, Analytical, and Physical Chemistry.
Tamar Kohn2014 - present Associate Professor, EPFL and adjunct researcher, Eawag 2007 - 2013 Assistant Professor, EPFL 2004 - 2006 Postdoctoral researcher, UC Berkeley 2000 - 2004 PhD, Environmental Engineering, Johns Hopkins University 1999 Diploma, Environmental Sciences, ETHZ
Martinus GijsMartin A.M. Gijs received his degree in physics in 1981 from the Katholieke Universiteit Leuven, Belgium and his Ph.D. degree in physics at the same university in 1986. He joined the Philips Research Laboratories in Eindhoven, The Netherlands, in 1987. Subsequently, he has worked there on micro-and nano-fabrication processes of high critical temperature superconducting Josephson and tunnel junctions, the microfabrication of microstructures in magnetic multilayers showing the giant magnetoresistance effect, the design and realisation of miniaturised motors for hard disk applications and the design and realisation of planar transformers for miniaturised power applications. He joined EPFL in 1997. His present interests are in developing technologies for novel magnetic devices, new microfabrication technologies for microsystems fabrication in general and the development and use of microsystems technologies for microfluidic and biomedical applications in particular.