Dynamic recrystallization (DRX) is a type of recrystallization process, found within the fields of metallurgy and geology. In dynamic recrystallization, as opposed to static recrystallization, the nucleation and growth of new grains occurs during deformation rather than afterwards as part of a separate heat treatment. The reduction of grain size increases the risk of grain boundary sliding at elevated temperatures, while also decreasing dislocation mobility within the material. The new grains are less strained, causing a decrease in the hardening of a material. Dynamic recrystallization allows for new grain sizes and orientation, which can prevent crack propagation. Rather than strain causing the material to fracture, strain can initiate the growth of a new grain, consuming atoms from neighboring pre-existing grains. After dynamic recrystallization, the ductility of the material increases. In a stress–strain curve, the onset of dynamic recrystallization can be recognized by a distinct peak in the flow stress in hot working data, due to the softening effect of recrystallization. However, not all materials display well-defined peaks when tested under hot working conditions. The onset of DRX can also be detected from inflection point in plots of the strain hardening rate against stress. It has been shown that this technique can be used to establish the occurrence of DRX when this cannot be determined unambiguously from the shape of the flow curve. If stress oscillations appear before reaching the steady state, then several recrystallization and grain growth cycles occur and the stress behavior is said to be of the cyclic or multiple peak type. The particular stress behavior before reaching the steady state depends on the initial grain size, temperature, and strain rate. DRX can occur in various forms, including: Geometric dynamic recrystallization Discontinuous dynamic recrystallization Continuous dynamic recrystallization Dynamic recrystallization is dependent on the rate of dislocation creation and movement.