In software engineering and systems engineering, a functional requirement defines a function of a system or its component, where a function is described as a summary (or specification or statement) of behavior between inputs and outputs. Functional requirements may involve calculations, technical details, data manipulation and processing, and other specific functionality that define what a system is supposed to accomplish. Behavioral requirements describe all the cases where the system uses the functional requirements, these are captured in use cases.
In product development and process optimization, a requirement is a singular documented physical or functional need that a particular design, product or process aims to satisfy. It is commonly used in a formal sense in engineering design, including for example in systems engineering, software engineering, or enterprise engineering. It is a broad concept that could speak to any necessary (or sometimes desired) function, attribute, capability, characteristic, or quality of a system for it to have value and utility to a customer, organization, internal user, or other stakeholder.
Performance engineering encompasses the techniques applied during a systems development life cycle to ensure the non-functional requirements for performance (such as throughput, latency, or memory usage) will be met. It may be alternatively referred to as systems performance engineering within systems engineering, and software performance engineering or application performance engineering within software engineering.
Requirements engineering (RE) is the process of defining, documenting, and maintaining requirements in the engineering design process. It is a common role in systems engineering and software engineering. The first use of the term requirements engineering was probably in 1964 in the conference paper "Maintenance, Maintainability, and System Requirements Engineering", but it did not come into general use until the late 1990s with the publication of an IEEE Computer Society tutorial in March 1997 and the establishment of a conference series on requirements engineering that has evolved into the International Requirements Engineering Conference.
In the context of software engineering, software quality refers to two related but distinct notions: Software's functional quality reflects how well it complies with or conforms to a given design, based on functional requirements or specifications. That attribute can also be described as the fitness for purpose of a piece of software or how it compares to competitors in the marketplace as a worthwhile product. It is the degree to which the correct software was produced.
Maintainability is the ease of maintaining or providing maintenance for a functioning product or service. Depending on the field, it can have slightly different meanings. In engineering, maintainability is the ease with which a product can be maintained to: correct defects or their cause, Repair or replace faulty or worn-out components without having to replace still working parts, prevent unexpected working conditions, maximize a product's useful life, maximize efficiency, reliability, and safety, meet new requirements, make future maintenance easier, or cope with a changing environment.
In software and systems engineering, the phrase use case is a polyseme with two senses: A usage scenario for a piece of software; often used in the plural to suggest situations where a piece of software may be useful. A potential scenario in which a system receives an external request (such as user input) and responds to it. This article discusses the latter sense. A use case is a list of actions or event steps typically defining the interactions between a role (known in the Unified Modeling Language (UML) as an actor) and a system to achieve a goal.
Software requirements for a system are the description of what the system should do, the service or services that it provides and the constraints on its operation. The IEEE Standard Glossary of Software Engineering Terminology defines a requirement as: A condition or capability needed by a user to solve a problem or achieve an objective. A condition or capability that must be met or possessed by a system or system component to satisfy a contract, standard, specification, or other formally imposed document.
FURPS is an acronym representing a model for classifying software quality attributes (functional and non-functional requirements): Functionality - Capability (Size & Generality of Feature Set), Reusability (Compatibility, Interoperability, Portability), Security (Safety & Exploitability) Usability (UX) - Human Factors, Aesthetics, Consistency, Documentation, Responsiveness Reliability - Availability (Failure Frequency (Robustness/Durability/Resilience), Failure Extent & Time-Length (Recoverability/Survivabil
A system architecture is the conceptual model that defines the structure, behavior, and more views of a system. An architecture description is a formal description and representation of a system, organized in a way that supports reasoning about the structures and behaviors of the system. A system architecture can consist of system components and the sub-systems developed, that will work together to implement the overall system. There have been efforts to formalize languages to describe system architecture, collectively these are called architecture description languages (ADLs).