|- bgcolor="#FFFAFA"
| Note (category: variability): || H and K emission vary.
Arcturus is the brightest star in the northern constellation of Boötes. With an apparent visual magnitude of −0.05, it is the fourth-brightest star in the night sky, and the brightest in the northern celestial hemisphere. The name Arcturus originated from ancient Greece; it was then cataloged as α Boötis by Johann Bayer in 1603, which is Latinized to Alpha Boötis. Arcturus forms one corner of the Spring Triangle asterism.
Located relatively close at 36.7 light-years from the Sun, Arcturus is a single red giant of spectral type K1.5III—an aging star around 7.1 billion years old that has used up its core hydrogen and evolved off the main sequence. It is about the same mass as the Sun, but has expanded to 25 times its size and is around 170 times as luminous. Its diameter is 35 million kilometres. Thus far no companion has been detected.
The traditional name Arcturus is Latinised from the ancient Greek Ἀρκτοῦρος (Arktouros) and means "Guardian of the Bear", ultimately from ἄρκτος (arktos), "bear" and οὖρος (ouros), "watcher, guardian".
The designation of Arcturus as α Boötis (Latinised to Alpha Boötis) was made by Johann Bayer in 1603. In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalog and standardize proper names for stars. The WGSN's first bulletin of July 2016 included a table of the first two batches of names approved by the WGSN, which included Arcturus for α Boötis.
With an apparent visual magnitude of −0.05, Arcturus is the brightest star in the northern celestial hemisphere and the fourth-brightest star in the night sky, after Sirius (−1.46 apparent magnitude), Canopus (−0.72) and α Centauri (combined magnitude of −0.27). However, α Centauri AB is a binary star, whose components are both fainter than Arcturus. This makes Arcturus the third-brightest individual star, just ahead of α Centauri A (officially named Rigil Kentaurus), whose apparent magnitude .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Sirius is the brightest star in the night sky. Its name is derived from the Greek word Σείριος, or , meaning 'glowing' or 'scorching'. The star is designated α Canis Majoris, Latinized to Alpha Canis Majoris, and abbreviated α CMa or Alpha CMa. With a visual apparent magnitude of −1.46, Sirius is almost twice as bright as Canopus, the next brightest star. Sirius is a binary star consisting of a main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B.
Betelgeuse is a red supergiant star of spectral type M1-2 and one of the largest visible to the naked eye. It is usually the tenth-brightest star in the night sky and, after Rigel, the second-brightest in the constellation of Orion. It is a distinctly reddish, semiregular variable star whose apparent magnitude, varying between +0.0 and +1.6, has the widest range displayed by any first-magnitude star. At near-infrared wavelengths, Betelgeuse is the brightest star in the night sky.
An asterism is an observed pattern or group of stars in the sky. Asterisms can be any identified pattern or group of stars, and therefore are a more general concept than the 88 formally defined constellations. Constellations are based on asterisms, but unlike asterisms, constellations outline and today completely divide the sky and all its celestial objects into regions around their central asterisms. For example, the asterism known as the Big Dipper comprises the seven brightest stars in the constellation Ursa Major.
Over the last years, brain-computer interfaces (BCIs) have shown their value for assistive
technology and neurorehabilitation. Recently, a BCI-approach for the rehabilitation of hemispatial
neglect has been proposed on the basis of covert visuospatial atte ...
EPFL2018
Extreme emission line galaxies (EELGs), where nebular emissions contribute 30%-40% of the flux in certain photometric bands, are ubiquitous in the early Universe (z > 6). We utilize deep NIRCam imaging from the JWST Advanced Deep Extragalactic Survey (JADE ...
Bristol2023
, , ,
The far-infrared fine-structure line [C II] at 1900.5 GHz is known to be one of the brightest cooling lines in local galaxies, and therefore it has been suggested to be an efficient tracer for star formation in very high redshift galaxies. However, recent ...