Concept

Le Sage's theory of gravitation

Summary
Le Sage's theory of gravitation is a kinetic theory of gravity originally proposed by Nicolas Fatio de Duillier in 1690 and later by Georges-Louis Le Sage in 1748. The theory proposed a mechanical explanation for Newton's gravitational force in terms of streams of tiny unseen particles (which Le Sage called ultra-mundane corpuscles) impacting all material objects from all directions. According to this model, any two material bodies partially shield each other from the impinging corpuscles, resulting in a net imbalance in the pressure exerted by the impact of corpuscles on the bodies, tending to drive the bodies together. This mechanical explanation for gravity never gained widespread acceptance. The theory posits that the force of gravity is the result of tiny particles (corpuscles) moving at high speed in all directions, throughout the universe. The intensity of the flux of particles is assumed to be the same in all directions, so an isolated object A is struck equally from all sides, resulting in only an inward-directed pressure but no net directional force (P1). With a second object B present, however, a fraction of the particles that would otherwise have struck A from the direction of B is intercepted, so B works as a shield, i.e. from the direction of B, A will be struck by fewer particles than from the opposite direction. Likewise B will be struck by fewer particles from the direction of A than from the opposite direction. One can say that A and B are "shadowing" each other, and the two bodies are pushed toward each other by the resulting imbalance of forces (P2). Thus the apparent attraction between bodies is, according to this theory, actually a diminished push from the direction of other bodies, so the theory is sometimes called push gravity or shadow gravity, although it is more widely referred to as Lesage gravity. Nature of collisions If the collisions of body A and the gravific particles are fully elastic, the intensity of the reflected particles would be as strong as of the incoming ones, so no net directional force would arise.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.