Summary
In discrete mathematics, tree rotation is an operation on a binary tree that changes the structure without interfering with the order of the elements. A tree rotation moves one node up in the tree and one node down. It is used to change the shape of the tree, and in particular to decrease its height by moving smaller subtrees down and larger subtrees up, resulting in improved performance of many tree operations. There exists an inconsistency in different descriptions as to the definition of the direction of rotations. Some say that the direction of rotation reflects the direction that a node is moving upon rotation (a left child rotating into its parent's location is a right rotation) while others say that the direction of rotation reflects which subtree is rotating (a left subtree rotating into its parent's location is a left rotation, the opposite of the former). This article takes the approach of the directional movement of the rotating node. The right rotation operation as shown in the adjacent image is performed with Q as the root and hence is a right rotation on, or rooted at, Q. This operation results in a rotation of the tree in the clockwise direction. The inverse operation is the left rotation, which results in a movement in a counter-clockwise direction (the left rotation shown above is rooted at P). The key to understanding how a rotation functions is to understand its constraints. In particular the order of the leaves of the tree (when read left to right for example) cannot change (another way to think of it is that the order that the leaves would be visited in an in-order traversal must be the same after the operation as before). Another constraint is the main property of a binary search tree, namely that the right child is greater than the parent and the left child is less than the parent. Notice that the right child of a left child of the root of a sub-tree (for example node B in the diagram for the tree rooted at Q) can become the left child of the root, that itself becomes the right child of the "new" root in the rotated sub-tree, without violating either of those constraints.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.