Concept

Semi-differentiability

In calculus, a branch of mathematics, the notions of one-sided differentiability and semi-differentiability of a real-valued function f of a real variable are weaker than differentiability. Specifically, the function f is said to be right differentiable at a point a if, roughly speaking, a derivative can be defined as the function's argument x moves to a from the right, and left differentiable at a if the derivative can be defined as x moves to a from the left. In mathematics, a left derivative and a right derivative are derivatives (rates of change of a function) defined for movement in one direction only (left or right; that is, to lower or higher values) by the argument of a function. Let f denote a real-valued function defined on a subset I of the real numbers. If a ∈ I is a limit point of I ∩ and the one-sided limit exists as a real number, then f is called right differentiable at a and the limit ∂+f(a) is called the right derivative of f at a. If a ∈ I is a limit point of I ∩ and the one-sided limit exists as a real number, then f is called left differentiable at a and the limit ∂–f(a) is called the left derivative of f at a. If a ∈ I is a limit point of I ∩ and I ∩ and if f is left and right differentiable at a, then f is called semi-differentiable at a. If the left and right derivatives are equal, then they have the same value as the usual ("bidirectional") derivative. One can also define a symmetric derivative, which equals the arithmetic mean of the left and right derivatives (when they both exist), so the symmetric derivative may exist when the usual derivative does not. A function is differentiable at an interior point a of its domain if and only if it is semi-differentiable at a and the left derivative is equal to the right derivative. An example of a semi-differentiable function, which is not differentiable, is the absolute value function , at a = 0. We find easily If a function is semi-differentiable at a point a, it implies that it is continuous at a.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.