In mathematics, a tangle is generally one of two related concepts: In John Conway's definition, an n-tangle is a proper embedding of the disjoint union of n arcs into a 3-ball; the embedding must send the endpoints of the arcs to 2n marked points on the ball's boundary. In link theory, a tangle is an embedding of n arcs and m circles into – the difference from the previous definition is that it includes circles as well as arcs, and partitions the boundary into two (isomorphic) pieces, which is algebraically more convenient – it allows one to add tangles by stacking them, for instance. (A quite different use of 'tangle' appears in Graph minors X. Obstructions to tree-decomposition by N. Robertson and P. D. Seymour, Journal of Combinatorial Theory B 52 (1991) 153–190, who used it to describe separation in graphs. This usage has been extended to matroids.) The balance of this article discusses Conway's sense of tangles; for the link theory sense, see that article. Two n-tangles are considered equivalent if there is an ambient isotopy of one tangle to the other keeping the boundary of the 3-ball fixed. Tangle theory can be considered analogous to knot theory except instead of closed loops, strings whose ends are nailed down are used. See also braid theory. Without loss of generality, consider the marked points on the 3-ball boundary to lie on a great circle. The tangle can be arranged to be in general position with respect to the projection onto the flat disc bounded by the great circle. The projection then gives us a tangle diagram, where we make note of over and undercrossings as with knot diagrams. Tangles often show up as tangle diagrams in knot or link diagrams and can be used as building blocks for link diagrams, e.g. pretzel links. A rational tangle is a 2-tangle that is homeomorphic to the trivial 2-tangle by a map of pairs consisting of the 3-ball and two arcs. The four endpoints of the arcs on the boundary circle of a tangle diagram are usually referred as NE, NW, SW, SE, with the symbols referring to the compass directions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.