Option-adjusted spread (OAS) is the yield spread which has to be added to a benchmark yield curve to discount a security's payments to match its market price, using a dynamic pricing model that accounts for embedded options. OAS is hence model-dependent. This concept can be applied to a mortgage-backed security (MBS), or another bond with embedded options, or any other interest rate derivative or option. More loosely, the OAS of a security can be interpreted as its "expected outperformance" versus the benchmarks, if the cash flows and the yield curve behave consistently with the valuation model.
In the context of an MBS or callable bond, the embedded option relates primarily to the borrower's right to early repayment, a right commonly exercised via the borrower refinancing the debt. These securities must therefore pay higher yields than noncallable debt, and their values are more fairly compared by OAS than by yield. OAS is usually measured in basis points (bp, or 0.01%).
For a security whose cash flows are independent of future interest rates, OAS is essentially the same as Z-spread.
In contrast to simpler "yield-curve spread" measurements of bond premium using a fixed cash-flow model (I-spread or Z-spread), the OAS quantifies the yield premium using a probabilistic model that incorporates two types of volatility:
Variable interest rates
Variable prepayment rates (for an MBS).
Designing such models in the first place is complicated because prepayment rates are a path-dependent and behavioural function of the stochastic interest rate. (They tend to go up as interest rates come down.) Specially calibrated Monte Carlo techniques are generally used to simulate hundreds of yield-curve scenarios for the calculation.
OAS is an emerging term with fluid use across MBS finance. The definition here is based on Lakhbir Hayre's Mortgage-Backed Securities textbook. Other definitions are rough analogs:
Take the expected value (mean NPV) across the range of all possible rate scenarios when discounting each scenario's actual cash flows with the Treasury yield curve plus a spread, X.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Participants of this course will master computational techniques frequently used in mathematical finance applications. Emphasis will be put on the implementation and practical aspects.
Explores the impact of materials and construction techniques on heat transfer in buildings.
Explores the Black-Scholes-Merton model, the Greeks, dynamic hedging, and engineering exposure in derivative pricing.
Introduces the principles of options in corporate finance, covering markets, terminology, valuation, and pricing models.
Bond valuation is the determination of the fair price of a bond. As with any security or capital investment, the theoretical fair value of a bond is the present value of the stream of cash flows it is expected to generate. Hence, the value of a bond is obtained by discounting the bond's expected cash flows to the present using an appropriate discount rate. In practice, this discount rate is often determined by reference to similar instruments, provided that such instruments exist.
In finance, the duration of a financial asset that consists of fixed cash flows, such as a bond, is the weighted average of the times until those fixed cash flows are received. When the price of an asset is considered as a function of yield, duration also measures the price sensitivity to yield, the rate of change of price with respect to yield, or the percentage change in price for a parallel shift in yields. The dual use of the word "duration", as both the weighted average time until repayment and as the percentage change in price, often causes confusion.
In finance, a lattice model is a technique applied to the valuation of derivatives, where a discrete time model is required. For equity options, a typical example would be pricing an American option, where a decision as to option exercise is required at "all" times (any time) before and including maturity. A continuous model, on the other hand, such as Black–Scholes, would only allow for the valuation of European options, where exercise is on the option's maturity date.
This paper reviews the mortgage-backed securities (MBS) market, with a particular emphasis on agency residential MBS in the United States. We discuss the institutional environment, security design, MBS risks and asset pricing, and the economic effects of m ...
This project falls within the framework of a Master Thesis at the Industrial Processes and Energy Systems Engineering (IPESE) laboratory of Ecole Polytechnique Fédérale de Lausanne (EPFL). With the aim of assessing the building stock impact on global energ ...
Capital ages and must eventually be replaced. We propose a theory of financing in which firms borrow to finance investment and deleverage as capital ages to have enough financial slack to finance replacement investments. To achieve these dynamics, firms is ...