In chemistry, the dispersity is a measure of the heterogeneity of sizes of molecules or particles in a mixture. A collection of objects is called uniform if the objects have the same size, shape, or mass. A sample of objects that have an inconsistent size, shape and mass distribution is called non-uniform. The objects can be in any form of chemical dispersion, such as particles in a colloid, droplets in a cloud, crystals in a rock,
or polymer macromolecules in a solution or a solid polymer mass. Polymers can be described by molecular mass distribution; a population of particles can be described by size, surface area, and/or mass distribution; and thin films can be described by film thickness distribution.
IUPAC has deprecated the use of the term polydispersity index, having replaced it with the term dispersity, represented by the symbol Đ (pronounced D-stroke) which can refer to either molecular mass or degree of polymerization. It can be calculated using the equation ĐM = Mw/Mn, where Mw is the weight-average molar mass and Mn is the number-average molar mass. It can also be calculated according to degree of polymerization, where ĐX = Xw/Xn, where Xw is the weight-average degree of polymerization and Xn is the number-average degree of polymerization. In certain limiting cases where ĐM = ĐX, it is simply referred to as Đ. IUPAC has also deprecated the terms monodisperse, which is considered to be self-contradictory, and polydisperse, which is considered redundant, preferring the terms uniform and non-uniform instead.
A uniform polymer (often referred to as a monodisperse polymer) is composed of molecules of the same mass. Nearly all natural polymers are uniform. Synthetic near-uniform polymer chains can be made by processes such as anionic polymerization, a method using an anionic catalyst to produce chains that are similar in length. This technique is also known as living polymerization. It is used commercially for the production of block copolymers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are sometimes called bipolymers. Those obtained from three and four monomers are called terpolymers and quaterpolymers, respectively. Copolymers can be characterized by a variety of techniques such as NMR spectroscopy and size-exclusion chromatography to determine the molecular size, weight, properties, and composition of the material.
Size-exclusion chromatography (SEC), also known as molecular sieve chromatography, is a chromatographic method in which molecules in solution are separated by their size, and in some cases molecular weight. It is usually applied to large molecules or macromolecular complexes such as proteins and industrial polymers. Typically, when an aqueous solution is used to transport the sample through the column, the technique is known as gel-filtration chromatography, versus the name gel permeation chromatography, which is used when an organic solvent is used as a mobile phase.
In polymer chemistry, the molar mass distribution (or molecular weight distribution) describes the relationship between the number of moles of each polymer species (Ni) and the molar mass (Mi) of that species. In linear polymers, the individual polymer chains rarely have exactly the same degree of polymerization and molar mass, and there is always a distribution around an average value. The molar mass distribution of a polymer may be modified by polymer fractionation.
Know modern methods of polymer synthesis. Understand how parameters, which determine polymer structure and properties, such as molecular weight, molecular weight distribution, topology, microstructure
The first part of the course is devoted to the self-assembly of molecules. In the second part we discuss basic physical chemical principles of polymers in solutions, at interfaces, and in bulk. Finall
Introduction aux relations mise en œuvre-structures-propriétés des polymères et céramiques, fournissant les bases nécessaires à la sélection de matériaux et procédés pour la fabrication de composants
Covers the concept of dispersity in polymer science, exploring strategies to control it and its impact on polymer properties and self-assembly.
Explores the challenges in achieving narrow dispersity polymers and the concept of living step polymerization.
Explores polymer synthesis basics, including step and radical chain polymerization, molecular weight control, copolymerization, and crosslinked polymers for microengineering.
Since a few decades our planet has been loaded with billion tons of synthetic polymer-based materials, commonly named plastics. The large scale of plastic production, associated with its limited recyclability, are the driving force for the accumulation of ...
Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) nanocomposite beads were prepared by facile, simple and environmentally friendlymethod. Initially, CuO-NiOwas prepared and applied for the catalytic reduction of 4-nitrophenol (4-NP). The resu ...
ELSEVIER2021
The wetting dynamics of molten thermoplastic polymers, which are known to influence the force balance of the triple line, are not understood properly despite their importance in many industrial processes. In particular, the influence of the molecular weigh ...