Caesium-137 (), cesium-137 (US), or radiocaesium, is a radioactive isotope of caesium that is formed as one of the more common fission products by the nuclear fission of uranium-235 and other fissionable isotopes in nuclear reactors and nuclear weapons. Trace quantities also originate from spontaneous fission of uranium-238. It is among the most problematic of the short-to-medium-lifetime fission products. Caesium-137 has a relatively low boiling point of and easily becomes volatile when released suddenly at high temperature, as in the case of the Chernobyl nuclear accident and with atomic explosions, and can travel very long distances in the air. After being deposited onto the soil as radioactive fallout, it moves and spreads easily in the environment because of the high water solubility of caesium's most common chemical compounds, which are salts. Caesium-137 was discovered by Glenn T. Seaborg and Margaret Melhase. Caesium-137 has a half-life of about 30.05 years. About 94.6% decays by beta emission to a metastable nuclear isomer of barium: barium-137m (137mBa, Ba-137m). The remainder directly populates the ground state of 137Ba, which is stable. Barium-137m has a half-life of about 153 seconds, and is responsible for all of the gamma ray emissions in samples of 137Cs. Barium-137m decays to the ground state by emission of photons having energy 0.6617 MeV. A total of 85.1% of 137Cs decay generates gamma ray emission in this manner. One gram of 137Cs has an activity of 3.215 terabecquerel (TBq). Caesium-137 has a number of practical uses. In small amounts, it is used to calibrate radiation-detection equipment. In medicine, it is used in radiation therapy. In industry, it is used in flow meters, thickness gauges, moisture-density gauges (for density readings, with americium-241/beryllium providing the moisture reading), and in gamma ray well logging devices. Caesium-137 is not widely used for industrial radiography because it is hard to obtain a very high specific activity material with a well defined (and small) shape as caesium from used nuclear fuel contains stable caesium-133 and also long-lived caesium-135.
Olivier Schneider, Yiming Li, Mingkui Wang, Chao Wang, Tagir Aushev, Sun Hee Kim, Tara Nanut, Jun Yong Kim, Ji Hyun Kim, Donghyun Kim, Xiao Wang, Lei Li