Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field f ...
The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin-lattice and spin-spin relaxation times of electrons. Minimizing the effects of spin-orbit coupling and the local magn ...
Quantum computers1 could revolutionize computing in a profound way due to the massive speedup they promise. A quantum computer comprises a cryogenic quantum processor and a classical electronic controller. When scaling up the cryogenic quantum processor to ...
Although researchers and engineers originally focused on a preponderantly irreversible computing paradigm, alternative models receive more and more attention. Reversible computation is a promising example which has applications in many emerging technologie ...
The D-Wave adiabatic quantum annealer solves hard combinatorial optimization problems leveraging quantum physics. The newest version features over 1000 qubits and was released in August 2015. We were given access to such a machine, currently hosted at NASA ...
The strong interaction between Electronic Design Automation (EDA) tools and Complementary Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement of modern digital electronics. The continuous downscaling of CMOS Field Effec ...
Reversible circuits implement invertible logic functions. They are of great interest to cryptography, coding theory, interconnect design, computer graphics, quantum computing, and many other fields. As for conventional circuits, checking the combinational ...
Electron spins in Si/SiGe quantum dots are one of the most promising candidates for a quantum bit for their potential to scale up and their long dephasing time. We report for the first time the experimental realization of single electron spin rotations in ...