Concept

Nil ideal

Summary
In mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent. The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil. Unfortunately the set of nil elements does not always form an ideal for noncommutative rings. Nil ideals are still associated with interesting open questions, especially the unsolved Köthe conjecture. In commutative rings, the nil ideals are better understood than in noncom mutative rings, primarily because in commutative rings, products involving nilpotent elements and sums of nilpotent elements are both nilpotent. This is because if a and b are nilpotent elements of R with an = 0 and bm = 0, and r is any element of R, then (a·r)n = an·r n = 0, and by the binomial theorem, (a+b)m+n = 0. Therefore, the set of all nilpotent elements forms an ideal known as the nil radical of a ring. Because the nil radical contains every nilpotent element, an ideal of a commutative ring is nil if and only if it is a subset of the nil radical, and so the nil radical is maximal among non-nil ideals. Furthermore, for any nilpotent element a of a commutative ring R, the ideal aR is nil. For a non commutative ring however, it is not in general true that the set of nilpotent elements forms an ideal, or that a ·R is a nil (one-sided) ideal, even if a is nilpotent. The theory of nil ideals is of major importance in noncommutative ring theory. In particular, through the understanding of nil rings—rings whose every element is nilpotent—one may obtain a much better understanding of more general rings. In the case of commutative rings, there is always a maximal nil ideal: the nilradical of the ring. The existence of such a maximal nil ideal in the case of noncommutative rings is guaranteed by the fact that the sum of nil ideals is again nil. However, the truth of the assertion that the sum of two left nil ideals is again a left nil ideal remains elusive; it is an open problem known as the Köthe conjecture.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.