Concept

Dual (category theory)

In , a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements. In other words, if a statement is true about C, then its dual statement is true about Cop. Also, if a statement is false about C, then its dual has to be false about Cop. Given a C, it is often the case that the opposite category Cop per se is abstract. Cop need not be a category that arises from mathematical practice. In this case, another category D is also termed to be in duality with C if D and Cop are equivalent as categories. In the case when C and its opposite Cop are equivalent, such a category is self-dual. We define the elementary language of category theory as the two-sorted first order language with objects and morphisms as distinct sorts, together with the relations of an object being the source or target of a morphism and a symbol for composing two morphisms. Let σ be any statement in this language. We form the dual σop as follows: Interchange each occurrence of "source" in σ with "target". Interchange the order of composing morphisms. That is, replace each occurrence of with Informally, these conditions state that the dual of a statement is formed by reversing arrows and compositions. Duality is the observation that σ is true for some category C if and only if σop is true for Cop. A morphism is a monomorphism if implies . Performing the dual operation, we get the statement that implies For a morphism , this is precisely what it means for f to be an epimorphism. In short, the property of being a monomorphism is dual to the property of being an epimorphism.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.