EpimorphismIn , an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism f : X → Y that is right-cancellative in the sense that, for all objects Z and all morphisms , Epimorphisms are categorical analogues of onto or surjective functions (and in the the concept corresponds exactly to the surjective functions), but they may not exactly coincide in all contexts; for example, the inclusion is a ring epimorphism. The of an epimorphism is a monomorphism (i.e. an epimorphism in a C is a monomorphism in the Cop).
Pullback (category theory)In , a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the of a consisting of two morphisms f : X → Z and g : Y → Z with a common codomain. The pullback is written P = X ×f, Z, g Y. Usually the morphisms f and g are omitted from the notation, and then the pullback is written P = X ×Z Y. The pullback comes equipped with two natural morphisms P → X and P → Y. The pullback of two morphisms f and g need not exist, but if it does, it is essentially uniquely defined by the two morphisms.
Stone dualityIn mathematics, there is an ample supply of categorical dualities between certain of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they form a natural generalization of Stone's representation theorem for Boolean algebras. These concepts are named in honor of Marshall Stone. Stone-type dualities also provide the foundation for pointless topology and are exploited in theoretical computer science for the study of formal semantics.
Adjoint functorsIn mathematics, specifically , adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e.
CokernelThe cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f. Cokernels are to the , hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel is a quotient object of the codomain (it maps from the codomain).
Category theoryCategory theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, numerous constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories.
Pushout (category theory)In , a branch of mathematics, a pushout (also called a fibered coproduct or fibered sum or cocartesian square or amalgamated sum) is the colimit of a consisting of two morphisms f : Z → X and g : Z → Y with a common domain. The pushout consists of an P along with two morphisms X → P and Y → P that complete a commutative square with the two given morphisms f and g. In fact, the defining universal property of the pushout (given below) essentially says that the pushout is the "most general" way to complete this commutative square.
CoequalizerIn , a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary . It is the categorical construction to the equalizer. A coequalizer is a colimit of the diagram consisting of two objects X and Y and two parallel morphisms f, g : X → Y. More explicitly, a coequalizer of the parallel morphisms f and g can be defined as an object Q together with a morphism q : Y → Q such that q ∘ f = q ∘ g.