Concept

Apollonian network

In combinatorial mathematics, an Apollonian network is an undirected graph formed by a process of recursively subdividing a triangle into three smaller triangles. Apollonian networks may equivalently be defined as the planar 3-trees, the maximal planar chordal graphs, the uniquely 4-colorable planar graphs, and the graphs of stacked polytopes. They are named after Apollonius of Perga, who studied a related circle-packing construction. An Apollonian network may be formed, starting from a single triangle embedded in the Euclidean plane, by repeatedly selecting a triangular face of the embedding, adding a new vertex inside the face, and connecting the new vertex to each vertex of the face containing it. In this way, the triangle containing the new vertex is subdivided into three smaller triangles, which may in turn be subdivided in the same way. The complete graphs on three and four vertices, K3 and K4, are both Apollonian networks. K3 is formed by starting with a triangle and not performing any subdivisions, while K4 is formed by making a single subdivision before stopping. The Goldner–Harary graph is an Apollonian network that forms the smallest non-Hamiltonian maximal planar graph. Another more complicated Apollonian network was used by to provide an example of a 1-tough non-Hamiltonian maximal planar graph. As well as being defined by recursive subdivision of triangles, the Apollonian networks have several other equivalent mathematical characterizations. They are the chordal maximal planar graphs, the chordal polyhedral graphs, and the planar 3-trees. They are the uniquely 4-colorable planar graphs, and the planar graphs with a unique Schnyder wood decomposition into three trees. They are the maximal planar graphs with treewidth three, a class of graphs that can be characterized by their forbidden minors or by their reducibility under Y-Δ transforms. They are the maximal planar graphs with degeneracy three.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Related publications (20)

Grammar-based generation of bar networks in static equilibrium with bounded bar lengths

Corentin Jean Dominique Fivet, Ioannis Mirtsopoulos

This paper presents a generative approach for the conceptual design of structures, which aims at exploring alternative bar networks in static equilibrium by means of a grammar rule. Operating on incomplete networks of bars in interim static equilibrium, th ...
2021

Manycore clique enumeration with fast set intersections

Paolo Ienne, Kubilay Atasu, Radu Ioan Stoica, Jovan Blanusa

Listing all maximal cliques of a given graph has important applications in the analysis of social and biological networks. Parallelisation of maximal clique enumeration (MCE) algorithms on modern manycore processors is challenging due to the task-level par ...
ACM2020

Grammar-based generation of trusses within non-convex domains

Corentin Jean Dominique Fivet, Ioannis Mirtsopoulos

A force-driven generative grammar rule is proposed as a design exploration method for planar networks in static equilibrium within non-convex domains. The aim is to enrich the catalog of unconventional structural typologies. Empty or partial networks in eq ...
fib2019
Show more
Related concepts (8)
Clique-sum
In graph theory, a branch of mathematics, a clique-sum is a way of combining two graphs by gluing them together at a clique, analogous to the connected sum operation in topology. If two graphs G and H each contain cliques of equal size, the clique-sum of G and H is formed from their disjoint union by identifying pairs of vertices in these two cliques to form a single shared clique, and then possibly deleting some of the clique edges. A k-clique-sum is a clique-sum in which both cliques have at most k vertices.
Degeneracy (graph theory)
In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is, and is within a constant factor of other sparsity measures such as the arboricity of a graph.
K-tree
In graph theory, a k-tree is an undirected graph formed by starting with a (k + 1)-vertex complete graph and then repeatedly adding vertices in such a way that each added vertex v has exactly k neighbors U such that, together, the k + 1 vertices formed by v and U form a clique. The k-trees are exactly the maximal graphs with a treewidth of k ("maximal" means that no more edges can be added without increasing their treewidth).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.