On 11 March 2011, a nuclear accident occurred at the Fukushima Daiichi Nuclear Power Plant in Ōkuma, Fukushima, Japan. The proximate cause of the disaster was the Tōhoku earthquake and tsunami, which remains the most powerful earthquake ever recorded in Japan. The earthquake triggered a powerful tsunami, with 13- to 14-meter-high waves damaging the nuclear power plant's emergency diesel generators, leading to a loss of electric power. The result was the most severe nuclear accident since the Chernobyl disaster in 1986, classified as level seven on the International Nuclear Event Scale (INES) after initially being classified as level five, and thus joining Chernobyl as the only other accident to receive such classification. While the 1957 explosion at the Mayak facility was the second worst by radioactivity released, the INES ranks incidents by impact on population, so Chernobyl (335,000 people evacuated) and Fukushima (154,000 evacuated) rank higher than the 10,000 evacuated from the Mayak site in the rural southern Urals.
The accident was triggered by the Tōhoku earthquake and tsunami, which occurred in the Pacific Ocean about east of the Japanese mainland at 14:46 JST on Friday, 11 March 2011. On detecting the earthquake, the active reactors automatically shut down their normal power-generating fission reactions. Because of these shutdowns and other electrical grid supply problems, the reactors' electricity supply failed, and their emergency diesel generators automatically started. Critically, these were required to provide electrical power to the pumps that circulated coolant through the reactors' cores. This continued circulation was vital to remove residual decay heat, which continues to be produced after fission has ceased. However, the earthquake had also generated a tsunami high that arrived shortly afterwards, swept over the plant's seawall, and then flooded the lower parts of the reactor buildings at units 1–4. This flooding caused the failure of the emergency generators and loss of power to the circulating pumps.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Tokaimura nuclear accidents refer to two nuclear related incidents near the village of Tōkai, Ibaraki Prefecture, Japan. The first accident occurred on 11 March 1997, producing an explosion after an experimental batch of solidified nuclear waste caught fire at the Power Reactor and Nuclear Fuel Development Corporation (PNC) radioactive waste bituminisation facility. Over twenty people were exposed to radiation. The second was a criticality accident at a separate fuel reprocessing facility belonging to Japan Nuclear Fuel Conversion Co.
The Kyshtym disaster, sometimes referred to as the Mayak disaster or Ozyorsk disaster in newer sources, was a radioactive contamination accident that occurred on 29 September 1957 at Mayak, a plutonium production site for nuclear weapons and nuclear fuel reprocessing plant located in the closed city of Chelyabinsk-40 (now Ozyorsk) in Chelyabinsk Oblast, Russian SFSR, Soviet Union. The disaster is the second worst nuclear incident by radioactivity released, after the Chernobyl disaster.
Since about 2001 the term nuclear renaissance has been used to refer to a possible nuclear power industry revival, driven by rising fossil fuel prices and new concerns about meeting greenhouse gas emission limits. In the 2009 World Energy Outlook, the International Energy Agency stated that: A nuclear renaissance is possible but cannot occur overnight. Nuclear projects face significant hurdles, including extended construction periods and related risks, long licensing processes and manpower shortages, plus long‐standing issues related to waste disposal, proliferation and local opposition.
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
This course offers students the opportunity to acquire the methods and tools needed for modern risk management from an engineering perspective. It focuses on actors, resources and objectives, while en
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
Nuclear power is a powerful technology that plays an important role in the fight against climate change, and research is continuously engaged in studies that could further improve its safety. After the Fukushima accident, Accident Tolerant Fuels research h ...
EPFL2024
,
DT operations at JET gave a unique and invaluable opportunity to design, develop and test real -time controllers that will be applied in future burning plasma devices, as ITER and SPARC. Among them, the dud detector [L. Piron et al. 2019 Fusion Eng. Design ...
The mechanical analysis of nuclear fuel behavior under base-irradiation conditions has traditionally been performed adopting the small-strain approximation. However, many cases of interest for fuel behavior involve the occurrence of large rod deformations ...