Pierre MagistrettiPierre J. Magistretti is an internationally-recognized neuroscientist who has made significant contributions in the field of brain energy metabolism. His group has discovered some of the cellular and molecular mechanisms that underlie the coupling between neuronal activity and energy consumption by the brain.
This work has considerable ramifications for the understanding of the origin of the signals detected with the current functional brain imaging techniques used in neurological and psychiatric research (see for example Magistretti et al, Science, 283: 496 497, 1999). He is the author of over 100 articles published in peer-reviewed journals.
He has given over 80 invited lectures at international meetings or at universities in Europe and North America, including the 2000 Talairach Lecture at the Functional Mapping of the Human Brain Conference. In November 2000 he has been a Mc Donnel Visiting Scholar at Washington University School of Medicine.
Pierre J. Magistretti is the President-Elect (2002 2004) of the Federation of European Neuroscience Societies (FENS) which has a membership of over 15000 European neuroscientists. He has been first president of the Swiss Society for Neuroscience (1997-1999) and the first Chairman of the Department of Neurosciences of the University of Lausanne (1996 1998).
Pierre J. Magistretti is Professor of Physiology (since 1988) at the University of Lausanne Medical School. He has been Vice-Dean of the University of Lausanne Medical School from 1996 to 2000. Pierre Magistretti, is Director of the Brain Mind Institute at EPFL and Director of the Center for Psychiatric Neuroscience of the University of Lausanne and CHUV. He is also Director of the NCCR SYNAPSY "the synaptic bases of mental diseases".
POSITIONS AND HONORS
MAIN POSITION HELD
1988-2004 Professor of Physiology, University of Lausanne Medical School
1996-2000 Vice-Dean for Preclinical Departments, University of Lausanne Medical School
2001-2004 Chairman, Department of Physiology, University of Lausanne Medical School
2004-present Professor and Director, Center for Psychiatric Neuroscience, Department of Psychiatry, University of Lausanne Medical School and Hospitals (UNIL-CHUV) (Joint appointment with EPFL)
2005-2008 Professor and Co-Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne (Joint appointment with UNIL-CHUV)
2007-present Chairman of the Scientific Advisory Board of Centre dImagerie Biomédicale (CIBM), an Imaging Consortium of the Universities, University Hospitals of Lausanne and Geneva and of Ecole Polytechnique Fédérale de Lausanne
2008-present Professor and Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne Joint appointment with UNIL-CHUV)
2010-present Director, National Center for Competence in Research (NCCR)
The synaptic bases of mental diseases of the Swiss National Science Foundation
2010-present Secretary General, International Brain Research Organization (IBRO)
MAIN HONORS AND AWARDS
1997 Recipient of the Theodore-Ott Prize of the Swiss Academy of Medical Sciences
2001 Elected Member of Academia Europaea
2001 Elected Member of the Swiss Academy of Medical Sciences, ad personam
2002 Recipient of the Emil Kraepelin Guest Professorship, Max Planck Institute für Psychiatry, Münich
2006 Elected Professor at Collège de France, Paris, International Chair 2007-2008
2009 Goethe Award for Psychoanalytic Scholarship, Canadian Psychological Association
2011 Camillo Golgi Medal Award, Golgi Fondation
2011 Elected Member of the American College of NeuroPsychopharmacology (ACNP)
Willy ZwaenepoelWilly Zwaenepoel received his B.S. from the University of Gent, Belgium in 1979, and his M.S. and Ph.D. from Stanford University in 1980 and 1984, respectively. In September 2002, he joined EPFL. He was Dean of the School of Computer and Communications Sciences at EPFL from 2002 to 2011. Before joining EPFL, Willy Zwaenepoel was on the faculty at Rice University, where he was the Karl F. Hasselmann Professor of Computer Science and Electrical and Computer Engineering.
He was elected Fellow of the IEEE in 1998, and Fellow of the ACM in 2000. In 2000 he received the Rice University Graduate Student Association Teaching and Mentoring Award. In 2007 he received the IEEE Tsutomu Kanai award. He was elected to the European Academy in 2009. He won best paper awards at SigComm 1984, OSDI 1999, Usenix 2000, Usenix 2006 and Eurosys 2007. He was program chair of OSDI in 1996 and Eurosys in 2006, and general chair of Mobisys in 2004. He was also an Associate Editor of the IEEE Transactions on Parallel and Distributed Systems from 1998 to 2002.
Willy Zwaenepoel has worked in a variety of aspects of operating and distributed systems, including microkernels, fault tolerance, parallel scientific computing on clusters of workstations, clusters for web services, mobile computing, database replication and virtualization. He is most well known for his work on the Treadmarks distributed shared memory system, which was licensed to Intel and became the basis for Intels OpenMP cluster product. His work on high-performance software for network I/O led to the creation of iMimic Networking, Inc, which he led from 2000 to 2005. His current interests include large-scale data stores and software testing. Most recently, his work in software testing led to the creation of BugBuster, a startup based in Lausanne.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Paolo IennePaolo Ienne has been a Professor at the EPFL since 2000 and heads the Processor Architecture Laboratory (LAP). Prior to that, he worked for the Semiconductors Group of Siemens AG, Munich, Germany (which later became Infineon Technologies AG) where he was at the head of the Embedded Memories unit in the Design Libraries division. His research interests include various aspects of computer and processor architecture, FPGAs and reconfigurable computing, electronic design automation, and computer arithmetic. Ienne was a recipient of Best Paper Awards at the 20th, 24th, and 28th ACM/SIGDA International Symposia on Field-Programmable Gate Arrays (FPGA), in 2012, 2016 and 2020, at the 19th and 30th International Conference on Field-Programmable Logic and Applications (FPL), in 2009 and 2020, at the International Conference on Compilers, Architectures, and Synthesis for Embedded Systems (CASES), in 2007, and at the 40th Design Automation Conference (DAC), in 2003; many other papers have been candidates to Best Paper Awards in prestigious venues. He has served as general, programme, and topic chair of renown international conferences, including organizing in Lausanne the 26th International Conference on Field-Programmable Logic and Applications (FPL) in 2016. He serves on the steering committee of the IEEE Symposium on Computer Arithmetic (ARITH) and of the International Conference on Field-Programmable Logic and Applications (FPL). Ienne has guest edited a number of special issues and special sections on various topics for IEEE and ACM journals. He is regularly member of program committees of international workshops and conferences in the areas of design automation, computer architecture, embedded systems, compilers, FPGAs, and asynchronous design. He has been an associate editor of ACM Transactions on Architecture and Code Optimization (TACO), since 2015, of ACM Computing Surveys (CSUR), since 2014, and of ACM Transactions on Design Automation of Electronic Systems (TODAES) from 2011 to 2016.
Florence Graezer BideauSenior Lecturer and Senior Scientist at the College of Humanities and at the School of Architecture, EPFLVisiting Professor at the Department of Architecture and Design, Politecnico di Torino PhD in History and Civilization (EHESS, Paris) Director of the Minor in Area and Cultural Studies (MACS) between 2012 and 2016Member of the Research group Heritage, culture and the cityAssociated researcher at the China Room Research Group and South China-Torino Collaboration Lab, Politecnico di Torino Associate member of the Laboratoire d’anthropologie culturelle et sociale (LACS), UNIL Member of the EDAR committee (Doctoral Program Architecture and Sciences of the City) at the School of Architecture, Civil and Environment Engineering in EPFL Florence Graezer Bideau trained as an anthropologist and a sinologist, and received her PhD in History and Civilization in 2005. Before joining the Centre for Area and Cultural Studies (CACS) at EPFL in 2010, she was a lecturer in anthropology at the University of Lausanne, where she taught courses in cultural theory and fieldwork methodology. She is Senior Lecturer and Senior Scientist at the College of Humanities where she teaches area studies, anthropology of China, critical heritage studies and urban studies. She has been acting as Director of the Minor in Area and Cultural Studies between 2012 and 2016 and she is currently a member of the EDAR committee (Doctoral Program Architecture and Sciences of the City) at the School of Architecture, Civil and Environment Engineering in EPFL. Since 2015, Florence has also been Visiting Professor at the Department of Architecture and Design, Politecnico di Torino, Italy. Her fields of expertise include anthropology of China, urban sociology, modes of sociability and governmentality. Florence’s research is on the relation between culture and power (making of cultural policy in China; emergence of maker movement (makerspaces) and politics of innovation in China), heritage issues (process of heritagization and multiculturalism in Malaysia and Singapore; implementation of the UNESCO Convention for Safeguarding Intangible Cultural Heritage in Switzerland; historic urban landscape in heritage policy of Beijing, Rome and Mexico City), and the making of the city (informal resistances toward the violence of urbanism in Caracas, Chennai and Guangzhou; uses of public spaces in Chinese new towns).
Andreas Peter BurgAndreas Burg was born in Munich, Germany, in 1975. He received his Dipl.-Ing. degree in 2000 from the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland. He then joined the Integrated Systems Laboratory of ETH Zurich, from where he graduated with the Dr. sc. techn. degree in 2006.
In 1998, he worked at Siemens Semiconductors, San Jose, CA. During his doctoral studies, he was an intern with Bell Labs Wireless Research for a total of one year. From 2006 to 2007, he held positions as postdoctoral researcher at the Integrated Systems Laboratory and at the Communication Theory Group of the ETH Zurich. In 2007 he co-founded Celestrius, an ETH-spinoff in the field of MIMO wireless communication, where he was responsible for the ASIC development as Director for VLSI. In January 2009, he joined ETH Zurich as SNF Assistant Professor and as head of the Signal Processing Circuits and Systems group at the Integrated Systems Laboratory.
In January 2011, he became a Tenure Track Assistant Professor at the Ecole Polytechnique Federale de Lausanne (EPFL) where he is leading the Telecommunications Circuits Laboratory in the School of Engineering. In June 2018 he was promoted to the role of a Tenured Associate Professor.
In 2000, Mr. Burg received the Willi Studer Award and the ETH Medal for his diploma and his diploma thesis, respectively. Mr. Burg was also awarded an ETH Medal for his Ph.D. dissertation in 2006. In 2008, he received a 4-years grant from the Swiss National Science Foundation (SNF) for an SNF Assistant Professorship. In his professional career, Mr. Burg was involved in the development of more than 25 ASICs. He is a member of the IEEE and of the European Association for Signal Processing (EURASIP).
Research interests and expertise
-
Circuits and systems for telecommunications (wireless and wired)
-
Prototyping and silicon implementation of new communication technologies
-
Development of communication algorithms and optimization for hardware implementation
-
Low-power VLSI signal processing for communications and other applications
-
Digital integrated circuits
-
Circuits for image and video processing
Mohammad Amin ShokrollahiAmin Shokrollahi has worked on a variety of topics, including coding theory, computational number theory and algebra, and computational/algebraic complexity theory. He is best known for his work on iterative decoding algorithms of graph based codes, an area in which he holds a number of granted and pending patents. He is the co-inventor of Tornado codes, and the inventor of Raptor codes. His codes have been standardized and successfully deployed in practical areas dealing with data transmission over lossy networks.
Prior to joining EPFL, Amin Shokrollahi has held positions as the chief scientist of Digital Fountain, member of the technical staff at Bell Laboratories, senior researcher at the International Computer Science Insitute in Berkeley, and assistant professor at the department of computer science of the university of Bonn. He is a Fellow of the IEEE, and he was awarded the Best Paper Award of the IEEE IT Society in 2002 for his work on iterative decoding of LDPC code, the IEEE Eric Sumner Award in 2007 for the development of Fountain Codes, and the joint Communication Society/Information Theory Society best paper award of 2007 for his paper on Raptor Codes.