A connected car is a car that can communicate bidirectionally with other systems outside of the car (LAN). This allows the car to share internet access, and hence data, with other devices both inside and outside the vehicle. For safety-critical applications, it is anticipated that cars will also be connected using dedicated short-range communications (DSRC) or cellular radios, operating in the FCC-granted 5.9 GHz band with very low latency.
Both the U.S. and EU scenarios concentrate on 5.9 GHz communications, however, the EU scenario has a clearer path towards the use of hybrid communications (through the proposed CALM approach) than does the U.S. scenario. Together with other emerging vehicular technologies such as automated driving, electric vehicles and shared mobility, connected vehicle is contributing to a new type of future mobility, which is autonomous, connected, electric and shared vehicles.
General Motors was the first automaker to bring the first connected car features to market with OnStar in 1996 in Cadillac DeVille, Seville and Eldorado. OnStar was created by GM working with Motorola Automotive (that was later bought by Continental). The primary purpose was safety and to get emergency help to a vehicle when there was an accident. The sooner medical helps arrives the more likely the drivers and passengers would survive. A cellular telephone call would be routed to a call center where the agent sent help.
At first, OnStar only worked with voice but when cellular systems added data the system was able to send the GPS location to the call center. After the success of OnStar, many automakers followed with similar safety programs that usually come with a free trial for a new car and then a paid subscription after the trial is over.
Remote diagnostics were introduced in 2001. By 2003 connected car services included vehicle health reports, turn-by-turn directions and a network access device. Data-only telematics were first offered in 2007.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores work, kinetic energy, forces, and energy conservation in mechanical systems.
Explores Multi-Criteria Analysis for sustainability assessment in urban systems, emphasizing stakeholder involvement and practical applications.
Covers the design of energy-efficient sensor interfaces for IoT nodes, emphasizing miniaturization and power efficiency.
Vehicle-to-everything (V2X) is communication between a vehicle and any entity that may affect, or may be affected by, the vehicle. It is a vehicular communication system that incorporates other more specific types of communication as V2I (vehicle-to-infrastructure), V2N (vehicle-to-network), V2V (vehicle-to-vehicle), V2P (vehicle-to-pedestrian), V2D (vehicle-to-device). The main motivations for V2X are road safety, traffic efficiency, energy savings, and mass surveillance. The U.S.
An intelligent transportation system (ITS) is an advanced application which aims to provide innovative services relating to different modes of transport and traffic management and enable users to be better informed and make safer, more coordinated, and 'smarter' use of transport networks. Some of these technologies include calling for emergency services when an accident occurs, using cameras to enforce traffic laws or signs that mark speed limit changes depending on conditions.
An advanced driver-assistance system (ADAS) includes technologies that assist drivers with the safe operation of a vehicle. Through a human-machine interface, ADAS increases car and road safety. ADAS uses automated technology, such as sensors and cameras, to detect nearby obstacles or driver errors, and respond accordingly. ADAS can enable various levels of autonomous driving. As most road crashes occur due to human error, ADAS are developed to automate, adapt, and enhance vehicle technology for safety and better driving.
Sustainability and ethical topics can be embedded and assessed in existing technical courses within an engineering curriculum. This article describes how we integrated a reflection on the importance of ethical and environmental aspects of connected objects ...
2023
,
In the context of smart cities, ensuring road safety is crucial due to increasing urbanization and the interconnected nature of contemporary urban environments. Leveraging innovative technologies is essential to mitigate risks and create safer communities. ...
While road obstacle detection techniques have become increasingly effective, they typically ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases. In this letter, we account for this by c ...