Mechanosynthesis is a term for hypothetical chemical syntheses in which reaction outcomes are determined by the use of mechanical constraints to direct reactive molecules to specific molecular sites. There are presently no non-biological chemical syntheses which achieve this aim. Some atomic placement has been achieved with scanning tunnelling microscopes.
In conventional chemical synthesis or chemosynthesis, reactive molecules encounter one another through random thermal motion in a liquid or vapor. In a hypothesized process of mechanosynthesis, reactive molecules would be attached to molecular mechanical systems, and their encounters would result from mechanical motions bringing them together in planned sequences, positions, and orientations. It is envisioned that mechanosynthesis would avoid unwanted reactions by keeping potential reactants apart, and would strongly favor desired reactions by holding reactants together in optimal orientations for many molecular vibration cycles. In biology, the ribosome provides an example of a programmable mechanosynthetic device.
A non-biological form of mechanochemistry has been performed at cryogenic temperatures using scanning tunneling microscopes. So far, such devices provide the closest approach to fabrication tools for molecular engineering. Broader exploitation of mechanosynthesis awaits more advanced technology for constructing molecular machine systems, with ribosome-like systems as an attractive early objective.
Much of the excitement regarding advanced mechanosynthesis regards its potential use in assembly of molecular-scale devices. Such techniques appear to have many applications in medicine, aviation, resource extraction, manufacturing and warfare.
Most theoretical explorations of advanced machines of this kind have focused on using carbon, because of the many strong bonds it can form, the many types of chemistry these bonds permit, and utility of these bonds in medical and mechanical applications. Carbon forms diamond, for example, which if cheaply available, would be an excellent material for many machines.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Molecular machines are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switches and motors. Naturally occurring or biological molecular machines are responsible for vital living processes such as DNA replication and ATP synthesis. Kinesins and ribosomes are examples of molecular machines, and they often take the form of multi-protein complexes.
A molecular assembler, as defined by K. Eric Drexler, is a "proposed device able to guide chemical reactions by positioning reactive molecules with atomic precision". A molecular assembler is a kind of molecular machine. Some biological molecules such as ribosomes fit this definition. This is because they receive instructions from messenger RNA and then assemble specific sequences of amino acids to construct protein molecules. However, the term "molecular assembler" usually refers to theoretical human-made devices.
Gray goo (also spelled as grey goo) is a hypothetical global catastrophic scenario involving molecular nanotechnology in which out-of-control self-replicating machines consume all biomass on Earth while building many more of themselves, a scenario that has been called ecophagy . The original idea assumed machines were designed to have this capability, while popularizations have assumed that machines might somehow gain this capability by accident.
Micro-nanotechnology based multielectrode arrays have led to remarkable progress in the field of transmembrane voltage recordings of excitable cells. However, electrode geometries alone have failed to produce a cell-electrode interface that is sufficiently ...
This contribution outlines a research proposal combining ethical guidelines on AI and a law-as-data approach. Building upon the definitions of soft law discussed in legal scholarship, it proposes a way of structuring the regulatory landscape on AI and of a ...
Nanofluidic systems offer a huge potential for discovery of new molecular transport and chemical phenomena that can be employed for future technologies. Herein, we report on the transport behavior of surface-reactive compounds in a nanometer-scale flow of ...