In computer science, a trie (ˈtriː, ˈtraɪ), also called digital tree or prefix tree, is a type of k-ary search tree, a tree data structure used for locating specific keys from within a set. These keys are most often strings, with links between nodes defined not by the entire key, but by individual characters. In order to access a key (to recover its value, change it, or remove it), the trie is traversed depth-first, following the links between nodes, which represent each character in the key. Unlike a binary search tree, nodes in the trie do not store their associated key. Instead, a node's position in the trie defines the key with which it is associated. This distributes the value of each key across the data structure, and means that not every node necessarily has an associated value. All the children of a node have a common prefix of the string associated with that parent node, and the root is associated with the empty string. This task of storing data accessible by its prefix can be accomplished in a memory-optimized way by employing a radix tree. Though tries can be keyed by character strings, they need not be. The same algorithms can be adapted for ordered lists of any underlying type, e.g. permutations of digits or shapes. In particular, a bitwise trie is keyed on the individual bits making up a piece of fixed-length binary data, such as an integer or memory address. The key lookup complexity of a trie remains proportional to the key size. Specialized trie implementations such as compressed tries are used to deal with the enormous space requirement of a trie in naive implementations. The idea of a trie for representing a set of strings was first abstractly described by Axel Thue in 1912. Tries were first described in a computer context by René de la Briandais in 1959. The idea was independently described in 1960 by Edward Fredkin, who coined the term trie, pronouncing it ˈtriː (as "tree"), after the middle syllable of retrieval. However, other authors pronounce it ˈtraɪ (as "try"), in an attempt to distinguish it verbally from "tree".

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (4)
Related concepts (9)
Tree (graph theory)
In graph theory, a tree is an undirected graph in which any two vertices are connected by path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A polytree (or directed tree or oriented tree or singly connected network) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree.
Substring
In formal language theory and computer science, a substring is a contiguous sequence of characters within a string. For instance, "the best of" is a substring of "It was the best of times". In contrast, "Itwastimes" is a subsequence of "It was the best of times", but not a substring. Prefixes and suffixes are special cases of substrings. A prefix of a string is a substring of that occurs at the beginning of ; likewise, a suffix of a string is a substring that occurs at the end of .
String-searching algorithm
In computer science, string-searching algorithms, sometimes called string-matching algorithms, are an important class of string algorithms that try to find a place where one or several strings (also called patterns) are found within a larger string or text. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet (finite set) Σ. Σ may be a human language alphabet, for example, the letters A through Z and other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = {A,C,G,T}) in bioinformatics.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.